-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIsFreeForSubst.v
741 lines (717 loc) · 26.1 KB
/
IsFreeForSubst.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
(** This is how we avoid captures of variables in substitutions.
Instead of automatically renaming all quantifiers for each substitution,
we simply check whether a substitution captures variables, and refuse it
when it does. *)
Require Import PeanoNat.
Require Import Arith.Compare_dec.
Require Import EnumSeqNat.
Require Import Formulas.
Require Import Substitutions.
(* Check that the substitution of term u for all free occurrences of variable Xv
in formula f does not capture any variables of u. *)
Definition IsFreeForSubstRec (u v f : nat) (rec : nat -> bool) : bool :=
match CoordNat f 0 with
| LnotHead => rec 1
| LimpliesHead
| LorHead
| LandHead => rec 1 && rec 2
| LforallHead
| LexistsHead => negb (VarOccursFreeInFormula v f) (* no substitutions *)
|| (rec 2 && negb (VarOccursInTerm (CoordNat f 1) u))
| LrelHead => true
| LopHead => true
| LvarHead => true
| _ => false
end.
Definition IsFreeForSubst (u v : nat) : nat -> bool
:= TreeFoldNat (IsFreeForSubstRec u v) false.
Lemma IsFreeForSubst_step : forall u v f,
IsFreeForSubst u v f
= TreeFoldNatRec (IsFreeForSubstRec u v) false f (fun k _ => IsFreeForSubst u v k).
Proof.
intros.
unfold IsFreeForSubst, TreeFoldNat. rewrite Fix_eq.
reflexivity.
intros. unfold IsFreeForSubstRec, TreeFoldNatRec.
destruct (le_lt_dec (LengthNat x) 0). reflexivity.
destruct (CoordNat x 0). reflexivity.
destruct n. rewrite H. reflexivity.
destruct n. rewrite H, H. reflexivity.
destruct n. rewrite H, H. reflexivity.
destruct n. rewrite H, H. reflexivity.
destruct n. rewrite H. reflexivity.
destruct n. rewrite H. reflexivity.
destruct n. reflexivity.
destruct n. reflexivity.
destruct n; reflexivity.
Qed.
Lemma IsFreeForSubst_not : forall u v f,
IsFreeForSubst u v (Lnot f) = IsFreeForSubst u v f.
Proof.
intros.
rewrite IsFreeForSubst_step.
unfold TreeFoldNatRec.
rewrite LengthLnot. simpl.
unfold IsFreeForSubstRec.
unfold Lnot.
rewrite CoordConsHeadNat, CoordConsTailNat.
rewrite CoordConsHeadNat.
reflexivity.
Qed.
Lemma IsFreeForSubst_implies : forall u v f g,
IsFreeForSubst u v (Limplies f g)
= (IsFreeForSubst u v f && IsFreeForSubst u v g)%bool.
Proof.
intros.
rewrite IsFreeForSubst_step.
unfold TreeFoldNatRec.
rewrite LengthLimplies. simpl.
unfold IsFreeForSubstRec.
unfold Limplies.
rewrite CoordConsHeadNat, CoordConsTailNat.
rewrite CoordConsHeadNat.
rewrite CoordConsTailNat, CoordConsTailNat.
rewrite CoordConsHeadNat.
reflexivity.
Qed.
Lemma IsFreeForSubst_or : forall u v f g,
IsFreeForSubst u v (Lor f g)
= (IsFreeForSubst u v f && IsFreeForSubst u v g)%bool.
Proof.
intros.
rewrite IsFreeForSubst_step.
unfold TreeFoldNatRec.
rewrite LengthLor. simpl.
unfold IsFreeForSubstRec.
unfold Lor.
rewrite CoordConsHeadNat, CoordConsTailNat.
rewrite CoordConsHeadNat.
rewrite CoordConsTailNat, CoordConsTailNat.
rewrite CoordConsHeadNat.
reflexivity.
Qed.
Lemma IsFreeForSubst_and : forall u v f g,
IsFreeForSubst u v (Land f g)
= (IsFreeForSubst u v f && IsFreeForSubst u v g)%bool.
Proof.
intros.
rewrite IsFreeForSubst_step.
unfold TreeFoldNatRec.
rewrite LengthLand. simpl.
unfold IsFreeForSubstRec.
unfold Land.
rewrite CoordConsHeadNat, CoordConsTailNat.
rewrite CoordConsHeadNat.
rewrite CoordConsTailNat, CoordConsTailNat.
rewrite CoordConsHeadNat.
reflexivity.
Qed.
Lemma IsFreeForSubst_equiv : forall u v f g,
IsFreeForSubst u v (Lequiv f g)
= (IsFreeForSubst u v f && IsFreeForSubst u v g)%bool.
Proof.
intros.
unfold Lequiv.
rewrite IsFreeForSubst_and, IsFreeForSubst_implies, IsFreeForSubst_implies.
destruct (IsFreeForSubst u v f), (IsFreeForSubst u v g); reflexivity.
Qed.
Lemma IsFreeForSubst_forall : forall u v n f,
IsFreeForSubst u v (Lforall n f)
= (Nat.eqb v n
|| negb (VarOccursFreeInFormula v f) (* no substitutions *)
|| (IsFreeForSubst u v f && negb (VarOccursInTerm n u)))%bool.
Proof.
intros. rewrite IsFreeForSubst_step.
unfold TreeFoldNatRec.
rewrite LengthLforall. simpl.
unfold IsFreeForSubstRec.
rewrite CoordNat_forall_2.
rewrite CoordNat_forall_1.
rewrite VarOccursFreeInFormula_forall.
unfold Lforall; rewrite CoordConsHeadNat.
rewrite Bool.negb_andb, Bool.negb_involutive.
reflexivity.
Qed.
Lemma IsFreeForSubst_exists : forall u v n f,
IsFreeForSubst u v (Lexists n f)
= (Nat.eqb v n
|| negb (VarOccursFreeInFormula v f) (* no substitutions *)
|| (IsFreeForSubst u v f && negb (VarOccursInTerm n u)))%bool.
Proof.
intros. rewrite IsFreeForSubst_step.
unfold TreeFoldNatRec.
rewrite LengthLexists. simpl.
unfold IsFreeForSubstRec.
rewrite CoordNat_exists_2.
rewrite CoordNat_exists_1.
rewrite VarOccursFreeInFormula_exists.
unfold Lexists; rewrite CoordConsHeadNat.
rewrite Bool.negb_andb, Bool.negb_involutive.
reflexivity.
Qed.
Lemma IsFreeForSubst_rel : forall u v f,
CoordNat f 0 = LrelHead
-> IsFreeForSubst u v f = true.
Proof.
intros. rewrite IsFreeForSubst_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat f) 0).
rewrite CoordNatAboveLength in H. discriminate. exact l.
unfold IsFreeForSubstRec. rewrite H. reflexivity.
Qed.
Lemma IsFreeForSubst_rel2 : forall u v r a b,
IsFreeForSubst u v (Lrel2 r a b) = true.
Proof.
intros. rewrite IsFreeForSubst_step.
unfold TreeFoldNatRec.
rewrite LengthLrel2. simpl.
unfold IsFreeForSubstRec.
unfold Lrel2, Lrel; rewrite CoordConsHeadNat.
reflexivity.
Qed.
(* An example of bad specialization that is avoided by IsFreeForSubst,
exists X1, X1 <> X0. *)
Lemma IsFreeForSubstExample :
IsFreeForSubst (Lvar 1) 0 (Lexists 1 (Lnot (Leq (Lvar 0) (Lvar 1))))
= false.
Proof.
rewrite IsFreeForSubst_exists.
rewrite VarOccursFreeInFormula_not.
rewrite IsFreeForSubst_not.
unfold Leq. rewrite IsFreeForSubst_rel2.
rewrite VarOccursInTerm_var.
rewrite VarOccursFreeInFormula_rel2.
rewrite VarOccursInTerm_var.
rewrite VarOccursInTerm_var.
reflexivity.
Qed.
Lemma IsFreeForSubst_nosubst : forall f,
IsLproposition f = true
-> forall v u, VarOccursFreeInFormula v f = false
-> IsFreeForSubst u v f = true.
Proof.
apply (Lproposition_rect (fun f => forall v u,
VarOccursFreeInFormula v f = false
-> IsFreeForSubst u v f = true)).
- (* Lrel *)
intros. rewrite IsFreeForSubst_rel. reflexivity.
unfold Lrel. rewrite CoordConsHeadNat. reflexivity.
- (* Lnot *)
intros. rewrite IsFreeForSubst_not. apply IHprop.
rewrite VarOccursFreeInFormula_not in H.
exact H.
- (* Limplies *)
intros.
rewrite VarOccursFreeInFormula_implies in H.
apply Bool.orb_false_elim in H. destruct H.
rewrite IsFreeForSubst_implies, IHg, IHh. reflexivity.
exact H0. exact H.
- (* Lor *)
intros.
rewrite VarOccursFreeInFormula_or in H.
apply Bool.orb_false_elim in H. destruct H.
rewrite IsFreeForSubst_or, IHg, IHh. reflexivity.
exact H0. exact H.
- (* Land *)
intros.
rewrite VarOccursFreeInFormula_and in H.
apply Bool.orb_false_elim in H. destruct H.
rewrite IsFreeForSubst_and, IHg, IHh. reflexivity.
exact H0. exact H.
- (* Lforall *)
intros. rewrite VarOccursFreeInFormula_forall in H.
rewrite IsFreeForSubst_forall.
destruct (Nat.eqb v0 v) eqn:des. reflexivity. simpl in H.
simpl. rewrite H. reflexivity.
- (* Lexists *)
intros. rewrite VarOccursFreeInFormula_exists in H.
rewrite IsFreeForSubst_exists.
destruct (Nat.eqb v0 v) eqn:des. reflexivity. simpl in H.
simpl. rewrite H. reflexivity.
Qed.
Lemma IsFreeForSubst_closed : forall f,
IsLproposition f = true
-> forall u v, (forall w, w <> v -> VarOccursInTerm w u = false)
-> IsFreeForSubst u v f = true.
Proof.
apply (Lproposition_rect (fun f => forall u v : nat,
(forall w : nat, w <> v -> VarOccursInTerm w u = false) ->
IsFreeForSubst u v f = true)).
- (* Lrel *)
intros. rewrite IsFreeForSubst_rel. reflexivity.
unfold Lrel. rewrite CoordConsHeadNat. reflexivity.
- (* Lnot *)
intros. rewrite IsFreeForSubst_not.
apply IHprop. exact H.
- (* Limplies *)
intros. rewrite IsFreeForSubst_implies.
apply andb_true_intro; split.
apply IHg. exact H.
apply IHh. exact H.
- (* Lor *)
intros. rewrite IsFreeForSubst_or.
apply andb_true_intro; split.
apply IHg. exact H.
apply IHh. exact H.
- (* Land *)
intros. rewrite IsFreeForSubst_and.
apply andb_true_intro; split.
apply IHg. exact H.
apply IHh. exact H.
- (* Lforall *)
intros. rewrite IsFreeForSubst_forall.
destruct (Nat.eqb v0 v) eqn:des. reflexivity. simpl.
destruct (VarOccursFreeInFormula v0 prop) eqn:v0occur.
2: reflexivity. simpl.
apply andb_true_intro; split.
apply IHprop. exact H.
apply Bool.negb_true_iff, H.
apply Nat.eqb_neq in des.
intro abs. rewrite abs in des. contradict des. reflexivity.
- (* Lexists *)
intros. rewrite IsFreeForSubst_exists.
destruct (v0 =? v) eqn:des. reflexivity. simpl.
destruct (VarOccursFreeInFormula v0 prop) eqn:v0occur.
2: reflexivity. simpl.
apply andb_true_intro; split.
apply IHprop. exact H.
apply Bool.negb_true_iff, H.
apply Nat.eqb_neq in des.
intro abs. rewrite abs in des. contradict des. reflexivity.
Qed.
(* IsFreeForSubst u w prop is needed, because all substitutions are free in
SubstTerm t v u. *)
Lemma SubstSubstNested : forall prop,
IsLproposition prop = true
-> forall t u v w, VarOccursFreeInFormula v prop = false
-> IsFreeForSubst u w prop = true
-> Subst t v (Subst u w prop) = Subst (SubstTerm t v u) w prop.
Proof.
apply (Lproposition_rect (fun prop =>
forall t u v w : nat,
VarOccursFreeInFormula v prop = false ->
IsFreeForSubst u w prop = true ->
Subst t v (Subst u w prop) = Subst (SubstTerm t v u) w prop )).
- (* Lrel *)
intros. rewrite Subst_rel, Subst_rel, Subst_rel.
apply f_equal. apply (SubstTermsNested r).
exact elemterms. exact H.
- (* Lnot *)
intros.
rewrite Subst_not, Subst_not, IHprop, Subst_not. reflexivity.
rewrite VarOccursFreeInFormula_not in H. exact H.
rewrite IsFreeForSubst_not in H0. exact H0.
- (* Limplies *)
intros.
rewrite VarOccursFreeInFormula_implies in H.
apply Bool.orb_false_elim in H.
rewrite IsFreeForSubst_implies in H0.
apply andb_prop in H0.
rewrite Subst_implies, Subst_implies, Subst_implies, IHg, IHh.
reflexivity. apply H. apply H0. apply H. apply H0.
- (* Lor *)
intros.
rewrite VarOccursFreeInFormula_or in H.
apply Bool.orb_false_elim in H.
rewrite IsFreeForSubst_or in H0.
apply andb_prop in H0.
rewrite Subst_or, Subst_or, Subst_or, IHg, IHh.
reflexivity. apply H. apply H0. apply H. apply H0.
- (* Land *)
intros.
rewrite VarOccursFreeInFormula_and in H.
apply Bool.orb_false_elim in H.
rewrite IsFreeForSubst_and in H0.
apply andb_prop in H0.
rewrite Subst_and, Subst_and, Subst_and, IHg, IHh.
reflexivity. apply H. apply H0. apply H. apply H0.
- (* Lforall *)
intros.
rewrite Subst_forall, Subst_forall, Subst_forall.
destruct (v =? w) eqn:desw, (v =? v0) eqn:desv.
+ apply Nat.eqb_eq in desw. subst w. reflexivity.
+ rewrite VarOccursFreeInFormula_forall, Nat.eqb_sym, desv in H.
simpl in H.
rewrite Subst_nosubst. reflexivity. exact H.
+ apply Nat.eqb_eq in desv. subst v0. clear H. apply f_equal.
rewrite IsFreeForSubst_forall, Nat.eqb_sym, desw in H0.
simpl in H0. destruct (VarOccursFreeInFormula w prop) eqn:occur.
simpl in H0.
apply andb_prop in H0. destruct H0 as [_ occvar].
rewrite SubstTerm_nosubst. reflexivity.
apply Bool.negb_true_iff in occvar. exact occvar.
rewrite Subst_nosubst, Subst_nosubst. reflexivity.
exact occur. exact occur.
+ apply f_equal.
rewrite VarOccursFreeInFormula_forall, Nat.eqb_sym, desv in H; simpl in H.
destruct (VarOccursFreeInFormula w prop) eqn:occur.
rewrite IHprop.
reflexivity.
exact H.
rewrite IsFreeForSubst_forall, Nat.eqb_sym, desw in H0.
simpl in H0. rewrite occur in H0.
apply andb_prop in H0. apply H0.
rewrite (Subst_nosubst _ w), (Subst_nosubst _ w), Subst_nosubst.
reflexivity. exact H. exact occur. exact occur.
- (* Lexists *)
intros.
rewrite Subst_exists, Subst_exists, Subst_exists.
destruct (v =? w) eqn:desw, (v =? v0) eqn:desv.
+ apply Nat.eqb_eq in desw. subst w. reflexivity.
+ rewrite VarOccursFreeInFormula_exists, Nat.eqb_sym, desv in H.
simpl in H.
rewrite Subst_nosubst. reflexivity. exact H.
+ apply Nat.eqb_eq in desv. subst v0. clear H. apply f_equal.
rewrite IsFreeForSubst_exists, Nat.eqb_sym, desw in H0.
simpl in H0. destruct (VarOccursFreeInFormula w prop) eqn:occur.
simpl in H0.
apply andb_prop in H0. destruct H0 as [_ occvar].
rewrite SubstTerm_nosubst. reflexivity.
apply Bool.negb_true_iff in occvar. exact occvar.
rewrite Subst_nosubst, Subst_nosubst. reflexivity.
exact occur. exact occur.
+ apply f_equal.
rewrite VarOccursFreeInFormula_exists, Nat.eqb_sym, desv in H; simpl in H.
destruct (VarOccursFreeInFormula w prop) eqn:occur.
rewrite IHprop.
reflexivity.
exact H.
rewrite IsFreeForSubst_exists, Nat.eqb_sym, desw in H0.
simpl in H0. rewrite occur in H0.
apply andb_prop in H0. apply H0.
rewrite (Subst_nosubst _ w), (Subst_nosubst _ w), Subst_nosubst.
reflexivity. exact H. exact occur. exact occur.
Qed.
Lemma VarOccursFreeInFormulaVarChange : forall prop v w,
IsLproposition prop = true
-> VarOccursFreeInFormula v prop = false
-> IsFreeForSubst (Lvar v) w prop = true
-> VarOccursFreeInFormula v (Subst (Lvar v) w prop)
= VarOccursFreeInFormula w prop.
Proof.
intros.
destruct (VarOccursFreeInFormula w prop) eqn:woccur.
revert prop H v w H0 H1 woccur.
apply (Lproposition_rect (fun prop => forall v w,
VarOccursFreeInFormula v prop = false ->
IsFreeForSubst (Lvar v) w prop = true ->
VarOccursFreeInFormula w prop = true ->
VarOccursFreeInFormula v (Subst (Lvar v) w prop) = true)).
- (* Lrel *)
intros.
rewrite Subst_rel.
apply VarOccursFreeInFormula_rel.
rewrite LengthMapNat. apply MapNatTruncated.
apply VarOccursFreeInFormula_rel in H1.
destruct H1 as [j [H1 H2]]. exists j.
split. rewrite LengthMapNat. exact H1.
rewrite CoordMapNat. 2: exact H1.
rewrite VarOccursInTermVarChange. exact H2.
apply elemterms, H1.
destruct (VarOccursInTerm v (CoordNat terms j)) eqn:des.
2: reflexivity.
pose proof (VarOccursFreeInFormula_rel v r terms) as [_ H3].
exact termsTrunc.
rewrite H in H3. symmetry. apply H3.
exists j. split. exact H1. exact des. exact termsTrunc.
- (* Lnot *)
intros. rewrite Subst_not, VarOccursFreeInFormula_not. apply IHprop.
rewrite VarOccursFreeInFormula_not in H. exact H.
rewrite IsFreeForSubst_not in H0. exact H0.
rewrite VarOccursFreeInFormula_not in H1. exact H1.
- (* Limplies *)
intros.
rewrite VarOccursFreeInFormula_implies in H.
apply Bool.orb_false_elim in H.
rewrite IsFreeForSubst_implies in H0. apply andb_prop in H0.
rewrite VarOccursFreeInFormula_implies in H1.
rewrite Subst_implies, VarOccursFreeInFormula_implies.
apply Bool.orb_prop in H1. destruct H1.
rewrite IHg. reflexivity. apply H. apply H0. exact H1.
rewrite IHh. rewrite Bool.orb_true_r. reflexivity. apply H. apply H0. exact H1.
- (* Lor *)
intros.
rewrite VarOccursFreeInFormula_or in H.
apply Bool.orb_false_elim in H.
rewrite IsFreeForSubst_or in H0. apply andb_prop in H0.
rewrite VarOccursFreeInFormula_or in H1.
rewrite Subst_or, VarOccursFreeInFormula_or.
apply Bool.orb_prop in H1. destruct H1.
rewrite IHg. reflexivity. apply H. apply H0. exact H1.
rewrite IHh. rewrite Bool.orb_true_r. reflexivity. apply H. apply H0. exact H1.
- (* Land *)
intros.
rewrite VarOccursFreeInFormula_and in H.
apply Bool.orb_false_elim in H.
rewrite IsFreeForSubst_and in H0. apply andb_prop in H0.
rewrite VarOccursFreeInFormula_and in H1.
rewrite Subst_and, VarOccursFreeInFormula_and.
apply Bool.orb_prop in H1. destruct H1.
rewrite IHg. reflexivity. apply H. apply H0. exact H1.
rewrite IHh. rewrite Bool.orb_true_r. reflexivity. apply H. apply H0. exact H1.
- (* Lforall *)
intros.
rewrite VarOccursFreeInFormula_forall in H.
rewrite VarOccursFreeInFormula_forall in H1.
rewrite IsFreeForSubst_forall in H0.
apply andb_prop in H1.
rewrite Subst_forall.
destruct (v =? w) eqn:desw.
apply Nat.eqb_eq in desw. subst w.
exfalso.
destruct H1. rewrite Nat.eqb_refl in H1. discriminate H1.
destruct H1 as [_ H1].
rewrite Nat.eqb_sym, desw in H0. simpl in H0.
rewrite VarOccursFreeInFormula_forall.
destruct (v0 =? v) eqn:desv. exfalso. clear H.
apply Nat.eqb_eq in desv. subst v.
rewrite H1 in H0. simpl in H0.
apply andb_prop in H0. destruct H0.
rewrite VarOccursInTerm_var, Nat.eqb_refl in H0. discriminate H0.
simpl.
apply IHprop.
apply H. simpl in H0.
rewrite H1 in H0.
apply andb_prop in H0. apply H0. exact H1.
- (* Lexists *)
intros.
rewrite VarOccursFreeInFormula_exists in H.
rewrite VarOccursFreeInFormula_exists in H1.
rewrite IsFreeForSubst_exists in H0.
apply andb_prop in H1.
rewrite Subst_exists.
destruct (v =? w) eqn:desw.
apply Nat.eqb_eq in desw. subst w.
exfalso.
destruct H1. rewrite Nat.eqb_refl in H1. discriminate H1.
destruct H1 as [_ H1].
rewrite Nat.eqb_sym, desw in H0. simpl in H0.
rewrite VarOccursFreeInFormula_exists.
destruct (v0 =? v) eqn:desv. exfalso. clear H.
apply Nat.eqb_eq in desv. subst v.
rewrite H1 in H0. simpl in H0.
apply andb_prop in H0. destruct H0.
rewrite VarOccursInTerm_var, Nat.eqb_refl in H0. discriminate H0.
simpl.
apply IHprop.
apply H. simpl in H0.
rewrite H1 in H0.
apply andb_prop in H0. apply H0. exact H1.
- unfold VarOccursFreeInFormula.
rewrite SubstSubstNested, SubstTerm_var, (Nat.eqb_refl v).
2: exact H. 2: exact H0. 2: exact H1.
rewrite Subst_nosubst, Subst_nosubst, Nat.eqb_refl. reflexivity.
exact woccur. exact woccur.
Qed.
Lemma IsFreeForSubstVarChange : forall prop,
IsLproposition prop = true
-> forall u v w, IsLterm u = true
-> VarOccursFreeInFormula v prop = false
-> IsFreeForSubst (Lvar v) w prop = true
-> IsFreeForSubst u v (Subst (Lvar v) w prop)
= IsFreeForSubst u w prop.
Proof.
apply (Lproposition_rect (fun prop => forall u v w,
IsLterm u = true
-> VarOccursFreeInFormula v prop = false
-> IsFreeForSubst (Lvar v) w prop = true
-> IsFreeForSubst u v (Subst (Lvar v) w prop)
= IsFreeForSubst u w prop)).
- (* Lrel *)
intros. rewrite Subst_rel, IsFreeForSubst_rel.
symmetry. apply IsFreeForSubst_rel.
unfold Lrel. rewrite CoordConsHeadNat. reflexivity.
unfold Lrel. rewrite CoordConsHeadNat. reflexivity.
- (* Lnot *)
intros.
rewrite IsFreeForSubst_not, Subst_not, IsFreeForSubst_not.
apply IHprop.
exact H.
rewrite VarOccursFreeInFormula_not in H0. exact H0.
rewrite IsFreeForSubst_not in H1. exact H1.
- (* Limplies *)
intros.
rewrite VarOccursFreeInFormula_implies in H0.
apply Bool.orb_false_elim in H0.
rewrite IsFreeForSubst_implies in H1.
apply andb_prop in H1.
rewrite Subst_implies, IsFreeForSubst_implies, IsFreeForSubst_implies, IHg, IHh.
reflexivity.
exact H. apply H0. apply H1.
exact H. apply H0. apply H1.
- (* Lor *)
intros.
rewrite VarOccursFreeInFormula_or in H0.
apply Bool.orb_false_elim in H0.
rewrite IsFreeForSubst_or in H1.
apply andb_prop in H1.
rewrite Subst_or, IsFreeForSubst_or, IsFreeForSubst_or, IHg, IHh.
reflexivity.
exact H. apply H0. apply H1.
exact H. apply H0. apply H1.
- (* Land *)
intros.
rewrite VarOccursFreeInFormula_and in H0.
apply Bool.orb_false_elim in H0.
rewrite IsFreeForSubst_and in H1.
apply andb_prop in H1.
rewrite Subst_and, IsFreeForSubst_and, IsFreeForSubst_and, IHg, IHh.
reflexivity.
exact H. apply H0. apply H1.
exact H. apply H0. apply H1.
- (* Lforall *)
intros v prop propprop IHprop u v0 w uterm vnoccur vfreesubst.
rewrite VarOccursFreeInFormula_forall in vnoccur.
rewrite Subst_forall, IsFreeForSubst_forall.
destruct (v =? w) eqn:des.
apply Nat.eqb_eq in des. subst w.
rewrite IsFreeForSubst_forall, Nat.eqb_refl. simpl.
destruct (v0 =? v) eqn:desv. reflexivity.
simpl.
destruct (VarOccursFreeInFormula v0 prop) eqn:occur.
2: reflexivity. discriminate vnoccur.
rewrite IsFreeForSubst_forall in vfreesubst.
rewrite Nat.eqb_sym in des. rewrite des in vfreesubst.
simpl in vfreesubst.
rewrite IsFreeForSubst_forall.
destruct (v0 =? v) eqn:desv. clear vnoccur.
apply Nat.eqb_eq in desv. subst v. simpl.
rewrite des.
destruct (VarOccursFreeInFormula w prop) eqn:woccur. 2: reflexivity.
exfalso. simpl in vfreesubst.
apply andb_prop in vfreesubst. destruct vfreesubst.
rewrite VarOccursInTerm_var, Nat.eqb_refl in H0. discriminate H0.
simpl. simpl in vnoccur.
apply Bool.orb_prop in vfreesubst.
destruct vfreesubst as [vfreesubst | vfreesubst].
apply Bool.negb_true_iff in vfreesubst.
rewrite des, vfreesubst. simpl.
rewrite Subst_nosubst, vnoccur. reflexivity. exact vfreesubst.
apply andb_prop in vfreesubst. destruct vfreesubst as [vfreesubst _].
rewrite IHprop.
f_equal.
rewrite VarOccursFreeInFormulaVarChange.
rewrite des. reflexivity.
exact propprop. exact vnoccur. exact vfreesubst.
exact uterm. exact vnoccur. exact vfreesubst.
- (* Lexists *)
intros v prop propprop IHprop u v0 w uterm vnoccur vfreesubst.
rewrite VarOccursFreeInFormula_exists in vnoccur.
rewrite Subst_exists, IsFreeForSubst_exists.
destruct (v =? w) eqn:des.
apply Nat.eqb_eq in des. subst w.
rewrite IsFreeForSubst_exists, Nat.eqb_refl. simpl.
destruct (v0 =? v) eqn:desv. reflexivity.
simpl.
destruct (VarOccursFreeInFormula v0 prop) eqn:occur.
2: reflexivity. discriminate vnoccur.
rewrite IsFreeForSubst_exists in vfreesubst.
rewrite Nat.eqb_sym in des. rewrite des in vfreesubst.
simpl in vfreesubst.
rewrite IsFreeForSubst_exists.
destruct (v0 =? v) eqn:desv. clear vnoccur.
apply Nat.eqb_eq in desv. subst v. simpl.
rewrite des.
destruct (VarOccursFreeInFormula w prop) eqn:woccur. 2: reflexivity.
exfalso. simpl in vfreesubst.
apply andb_prop in vfreesubst. destruct vfreesubst.
rewrite VarOccursInTerm_var, Nat.eqb_refl in H0. discriminate H0.
simpl. simpl in vnoccur.
apply Bool.orb_prop in vfreesubst.
destruct vfreesubst as [vfreesubst | vfreesubst].
apply Bool.negb_true_iff in vfreesubst.
rewrite des, vfreesubst. simpl.
rewrite Subst_nosubst, vnoccur. reflexivity. exact vfreesubst.
apply andb_prop in vfreesubst. destruct vfreesubst as [vfreesubst _].
rewrite IHprop.
f_equal.
rewrite VarOccursFreeInFormulaVarChange.
rewrite des. reflexivity.
exact propprop. exact vnoccur. exact vfreesubst.
exact uterm. exact vnoccur. exact vfreesubst.
Qed.
(* This does not extend to ill-formed propositions, because we chose
IsFreeForSubst = false on them. *)
Lemma MaxVarFreeSubst : forall prop,
IsLproposition prop = true
-> forall v t,
(forall w, VarOccursInTerm w t = true -> MaxVar prop < w)
-> IsFreeForSubst t v prop = true.
Proof.
apply (Lproposition_rect (fun prop => forall v t,
(forall w, VarOccursInTerm w t = true -> MaxVar prop < w)
-> IsFreeForSubst t v prop = true)).
- (* Lrel *)
intros. apply IsFreeForSubst_rel.
unfold Lrel. rewrite CoordConsHeadNat. reflexivity.
- intros.
rewrite IsFreeForSubst_not.
rewrite MaxVar_not in H. apply IHprop, H.
- intros.
rewrite IsFreeForSubst_implies.
rewrite MaxVar_implies in H.
rewrite IHg, IHh. reflexivity.
intros w H0. specialize (H w H0).
exact (Nat.le_lt_trans _ _ _ (Nat.le_max_r _ _) H).
intros w H0. specialize (H w H0).
exact (Nat.le_lt_trans _ _ _ (Nat.le_max_l _ _) H).
- intros.
rewrite IsFreeForSubst_or.
rewrite MaxVar_or in H.
rewrite IHg, IHh. reflexivity.
intros w H0. specialize (H w H0).
exact (Nat.le_lt_trans _ _ _ (Nat.le_max_r _ _) H).
intros w H0. specialize (H w H0).
exact (Nat.le_lt_trans _ _ _ (Nat.le_max_l _ _) H).
- intros.
rewrite IsFreeForSubst_and.
rewrite MaxVar_and in H.
rewrite IHg, IHh. reflexivity.
intros w H0. specialize (H w H0).
exact (Nat.le_lt_trans _ _ _ (Nat.le_max_r _ _) H).
intros w H0. specialize (H w H0).
exact (Nat.le_lt_trans _ _ _ (Nat.le_max_l _ _) H).
- intros.
rewrite IsFreeForSubst_forall.
rewrite MaxVar_forall in H.
rewrite IHprop. simpl. clear IHprop.
destruct (v0 =? v) eqn:des. reflexivity. simpl.
destruct (VarOccursInTerm v t) eqn:vt.
2: simpl; apply Bool.orb_true_r. exfalso.
specialize (H v vt).
apply (Nat.lt_irrefl v).
refine (Nat.le_lt_trans _ _ _ _ H).
apply Nat.le_max_l.
intros w H0. specialize (H w H0).
exact (Nat.le_lt_trans _ _ _ (Nat.le_max_r _ _) H).
- intros.
rewrite IsFreeForSubst_exists.
rewrite MaxVar_exists in H.
rewrite IHprop. simpl. clear IHprop.
destruct (v0 =? v) eqn:des. reflexivity. simpl.
destruct (VarOccursInTerm v t) eqn:vt.
2: simpl; apply Bool.orb_true_r. exfalso.
specialize (H v vt).
apply (Nat.lt_irrefl v).
refine (Nat.le_lt_trans _ _ _ _ H).
apply Nat.le_max_l.
intros w H0. specialize (H w H0).
exact (Nat.le_lt_trans _ _ _ (Nat.le_max_r _ _) H).
Qed.
Lemma MaxVarFreeSubst_var : forall prop,
IsLproposition prop = true
-> forall v w, MaxVar prop < v
-> IsFreeForSubst (Lvar v) w prop = true.
Proof.
intros. apply MaxVarFreeSubst.
exact H. intros. rewrite VarOccursInTerm_var in H1.
apply Nat.eqb_eq in H1. subst w0. exact H0.
Qed.
Lemma IsFreeForSubstIdemVar : forall prop v,
IsLproposition prop = true
-> IsFreeForSubst (Lvar v) v prop = true.
Proof.
intros. apply IsFreeForSubst_closed.
exact H. intros. rewrite VarOccursInTerm_var.
apply Nat.eqb_neq, H0.
Qed.