-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSubstitutions.v
2126 lines (2028 loc) · 75.4 KB
/
Substitutions.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(** Functions to substitute terms for variables, and checks of variable captures. *)
Require Import PeanoNat.
Require Import Arith.Wf_nat.
Require Import Arith.Compare_dec.
Require Import EnumSeqNat.
Require Import Formulas.
(* Substitute term u for variable Xv in term t.
SubstTerm truncates t, as does Subst below. *)
Definition SubstTermRec (u v t : nat) (rec : nat -> nat) : nat :=
match CoordNat t 0 with
| LvarHead => if Nat.eqb (CoordNat t 1) v then u else t
| LopHead => Lop (CoordNat t 1) (MapNat rec (RangeNat 2 (LengthNat t - 2)))
| _ => 0
end.
Definition SubstTerm (u v : nat) : nat -> nat := TreeFoldNat (SubstTermRec u v) O.
Lemma SubstTerm_step : forall u v t,
SubstTerm u v t = TreeFoldNatRec (SubstTermRec u v) O t (fun k _ => SubstTerm u v k).
Proof.
intros.
unfold SubstTerm, TreeFoldNat. rewrite Fix_eq.
reflexivity.
intros. unfold TreeFoldNatRec, SubstTermRec.
destruct (le_lt_dec (LengthNat x) 0). reflexivity.
destruct (CoordNat x 0). reflexivity.
repeat (destruct n; [reflexivity|]).
destruct n. 2: destruct n; reflexivity.
apply f_equal.
apply MapNatExt. intros.
rewrite H. reflexivity.
Qed.
Lemma SubstTerm_zero : forall u v, SubstTerm u v 0 = 0.
Proof.
intros. rewrite SubstTerm_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat 0) 0). reflexivity.
inversion l.
Qed.
Lemma SubstTerm_varHead : forall u v t,
CoordNat t 0 = LvarHead
-> SubstTerm u v t = (if Nat.eqb (CoordNat t 1) v then u else t).
Proof.
intros. rewrite SubstTerm_step.
unfold SubstTermRec, TreeFoldNatRec.
destruct (le_lt_dec (LengthNat t) 0).
exfalso.
rewrite CoordNatAboveLength in H. discriminate. exact l.
rewrite H. reflexivity.
Qed.
Lemma SubstTerm_var : forall u v t,
SubstTerm u v (Lvar t) = (if Nat.eqb t v then u else Lvar t).
Proof.
intros. rewrite SubstTerm_varHead.
unfold Lvar.
rewrite CoordConsTailNat, CoordConsHeadNat.
reflexivity.
unfold Lvar.
rewrite CoordConsHeadNat. reflexivity.
Qed.
Lemma SubstTerm_opHead : forall u v t,
CoordNat t 0 = LopHead
-> SubstTerm u v t
= Lop (CoordNat t 1)
(MapNat (fun i : nat => SubstTerm u v (CoordNat t i)) (RangeNat 2 (LengthNat t - 2))).
Proof.
intros.
rewrite SubstTerm_step.
unfold SubstTermRec, TreeFoldNatRec.
destruct (le_lt_dec (LengthNat t) 0).
exfalso. rewrite CoordNatAboveLength in H. discriminate. exact l.
rewrite H. reflexivity.
Qed.
Lemma SubstTerm_op : forall u v o args,
SubstTerm u v (Lop o args)
= Lop o (MapNat (SubstTerm u v) args).
Proof.
intros. rewrite SubstTerm_opHead.
unfold Lop at 2. rewrite CoordConsTailNat, CoordConsHeadNat.
rewrite LengthLop.
replace (2 + LengthNat args - 2) with (LengthNat args).
apply f_equal.
apply TruncatedEqNat.
rewrite LengthMapNat, LengthRangeNat, LengthMapNat. reflexivity.
rewrite LengthMapNat, MapNatTruncated.
rewrite LengthMapNat, MapNatTruncated. reflexivity.
intros k H. rewrite LengthMapNat in H.
rewrite CoordMapNat. 2: exact H.
rewrite LengthRangeNat in H.
rewrite CoordMapNat, CoordRangeNat, (CoordNat_op _ _ k). reflexivity.
exact H. exact H.
rewrite Nat.add_comm. rewrite Nat.add_sub. reflexivity.
unfold Lop. rewrite CoordConsHeadNat. reflexivity.
Qed.
Lemma SubstTerm_const : forall u v c,
SubstTerm u v (Lconst c) = Lconst c.
Proof.
intros. unfold Lconst.
rewrite SubstTerm_op.
reflexivity.
Qed.
Lemma SubstTerm_op1 : forall u v o a,
SubstTerm u v (Lop1 o a) = Lop1 o (SubstTerm u v a).
Proof.
intros. unfold Lop1.
rewrite SubstTerm_op, MapConsNat, MapNilNat. reflexivity.
Qed.
Lemma SubstTerm_op2 : forall u v o a b,
SubstTerm u v (Lop2 o a b) = Lop2 o (SubstTerm u v a) (SubstTerm u v b).
Proof.
intros. unfold Lop2.
rewrite SubstTerm_op, MapConsNat, MapConsNat, MapNilNat. reflexivity.
Qed.
Lemma SubstTerm_op3 : forall u v o a b c,
SubstTerm u v (Lop3 o a b c)
= Lop3 o (SubstTerm u v a) (SubstTerm u v b) (SubstTerm u v c).
Proof.
intros. unfold Lop3.
rewrite SubstTerm_op, MapConsNat, MapConsNat, MapConsNat, MapNilNat. reflexivity.
Qed.
Lemma SubstTerm_not : forall u v f, SubstTerm u v (Lnot f) = 0.
Proof.
intros.
rewrite SubstTerm_step.
unfold SubstTermRec, TreeFoldNatRec.
destruct (le_lt_dec (LengthNat (Lnot f)) 0).
reflexivity.
unfold Lnot.
rewrite CoordConsHeadNat. reflexivity.
Qed.
Lemma IsSubstTermLterm : forall u v t : nat,
IsLterm t = true ->
IsLterm u = true ->
IsLterm (SubstTerm u v t) = true.
Proof.
intros u v.
apply (Lterm_rect (fun term => IsLterm u = true ->
IsLterm (SubstTerm u v term) = true)).
- (* Lvar *)
intros.
rewrite SubstTerm_var. destruct (v0 =? v).
exact H. apply IsLterm_var.
- (* Lop *)
intros.
rewrite SubstTerm_op.
apply LopIsTerm.
intros i H0. rewrite LengthMapNat in H0.
rewrite CoordMapNat.
apply IHterms. exact H0. exact H. exact H0.
rewrite LengthMapNat. apply MapNatTruncated.
Qed.
(* Substitute term u for all free occurrences of variable Xv in formula f.
This accepts variable captures, which will be handled by IsFreeForSubst below. *)
Definition SubstRec (u v f : nat) (rec : nat -> nat) : nat :=
match CoordNat f 0 with
| LnotHead => Lnot (rec 1) (* this truncates ill-formed propositions *)
| LimpliesHead => Limplies (rec 1) (rec 2)
| LorHead => Lor (rec 1) (rec 2)
| LandHead => Land (rec 1) (rec 2)
| LforallHead => Lforall (CoordNat f 1)
(if Nat.eqb (CoordNat f 1) v
then CoordNat f 2 (* do not substitute u for bound Xv *)
else rec 2)
| LexistsHead => Lexists (CoordNat f 1)
(if Nat.eqb (CoordNat f 1) v
then CoordNat f 2 (* do not substitute u for bound Xv *)
else rec 2)
| LrelHead => Lrel (CoordNat f 1) (MapNat (SubstTerm u v) (TailNat (TailNat f)))
| _ => 0
end.
Definition Subst (u v : nat) : nat -> nat := TreeFoldNat (SubstRec u v) O.
Lemma Subst_step : forall u v f,
Subst u v f = TreeFoldNatRec (SubstRec u v) O f (fun k _ => Subst u v k).
Proof.
intros.
unfold Subst, TreeFoldNat. rewrite Fix_eq.
reflexivity.
intros x g h H. unfold TreeFoldNatRec, SubstRec.
destruct (le_lt_dec (LengthNat x) 0). reflexivity.
destruct (CoordNat x 0). reflexivity.
destruct n. rewrite H. reflexivity.
destruct n. rewrite H, H. reflexivity.
destruct n. rewrite H, H. reflexivity.
destruct n. rewrite H, H. reflexivity.
destruct n. rewrite H. reflexivity.
destruct n. rewrite H. reflexivity.
destruct n. reflexivity. reflexivity.
Qed.
Lemma Subst_not : forall u v f, Subst u v (Lnot f) = Lnot (Subst u v f).
Proof.
intros. rewrite Subst_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat (Lnot f)) 0).
rewrite LengthLnot in l. inversion l.
unfold SubstRec, Lnot.
rewrite CoordConsHeadNat.
rewrite CoordConsTailNat, CoordConsHeadNat.
reflexivity.
Qed.
Lemma Subst_implies : forall u v f g,
Subst u v (Limplies f g) = Limplies (Subst u v f) (Subst u v g).
Proof.
intros. rewrite Subst_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat (Limplies f g)) 0).
rewrite LengthLimplies in l. inversion l.
unfold SubstRec, Limplies.
rewrite CoordConsHeadNat.
do 3 rewrite CoordConsTailNat.
do 2 rewrite CoordConsHeadNat.
reflexivity.
Qed.
Lemma Subst_or : forall u v f g,
Subst u v (Lor f g) = Lor (Subst u v f) (Subst u v g).
Proof.
intros. rewrite Subst_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat (Lor f g)) 0).
rewrite LengthLor in l. inversion l.
unfold SubstRec, Lor.
rewrite CoordConsHeadNat.
do 3 rewrite CoordConsTailNat.
do 2 rewrite CoordConsHeadNat.
reflexivity.
Qed.
Lemma Subst_and : forall u v f g,
Subst u v (Land f g) = Land (Subst u v f) (Subst u v g).
Proof.
intros. rewrite Subst_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat (Land f g)) 0).
rewrite LengthLand in l. inversion l.
unfold SubstRec, Land.
rewrite CoordConsHeadNat.
do 3 rewrite CoordConsTailNat.
do 2 rewrite CoordConsHeadNat.
reflexivity.
Qed.
Lemma Subst_equiv : forall u v f g,
Subst u v (Lequiv f g) = Lequiv (Subst u v f) (Subst u v g).
Proof.
intros. rewrite Subst_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat (Lequiv f g)) 0).
unfold Lequiv in l. rewrite LengthLand in l. inversion l.
unfold SubstRec, Lequiv, Land.
rewrite CoordConsHeadNat.
do 3 rewrite CoordConsTailNat.
do 2 rewrite CoordConsHeadNat.
rewrite Subst_implies.
rewrite Subst_implies.
reflexivity.
Qed.
Lemma Subst_forallHead : forall u v f,
CoordNat f 0 = LforallHead
-> Subst u v f
= Lforall (CoordNat f 1) (if CoordNat f 1 =? v then CoordNat f 2
else (Subst u v (CoordNat f 2))).
Proof.
intros. rewrite Subst_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat f) 0).
exfalso. rewrite CoordNatAboveLength in H. discriminate. exact l.
unfold SubstRec, Lforall.
rewrite H.
reflexivity.
Qed.
Lemma Subst_forall : forall u v i f,
Subst u v (Lforall i f)
= Lforall i (if Nat.eqb i v then f else Subst u v f).
Proof.
intros. rewrite (Subst_forallHead _ _ (Lforall i f)).
rewrite CoordNat_forall_1, CoordNat_forall_2.
reflexivity.
unfold Lforall.
rewrite CoordConsHeadNat.
reflexivity.
Qed.
Lemma Subst_existsHead : forall u v f,
CoordNat f 0 = LexistsHead
-> Subst u v f
= Lexists (CoordNat f 1) (if CoordNat f 1 =? v then CoordNat f 2
else (Subst u v (CoordNat f 2))).
Proof.
intros. rewrite Subst_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat f) 0).
exfalso. rewrite CoordNatAboveLength in H. discriminate. exact l.
unfold SubstRec, Lexists.
rewrite H.
reflexivity.
Qed.
Lemma Subst_exists : forall u v i f,
Subst u v (Lexists i f)
= Lexists i (if Nat.eqb i v then f else Subst u v f).
Proof.
intros. rewrite Subst_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat (Lexists i f)) 0).
rewrite LengthLexists in l. inversion l.
unfold SubstRec, Lexists; rewrite CoordConsHeadNat.
rewrite CoordConsTailNat, CoordConsHeadNat.
rewrite CoordConsTailNat, CoordConsTailNat.
rewrite CoordConsHeadNat.
reflexivity.
Qed.
Lemma Subst_rel : forall u v r args,
Subst u v (Lrel r args) = Lrel r (MapNat (SubstTerm u v) args).
Proof.
intros. rewrite Subst_step.
unfold TreeFoldNatRec.
destruct (le_lt_dec (LengthNat (Lrel r args)) 0).
rewrite LengthLrel in l. inversion l.
unfold SubstRec, Lrel; rewrite CoordConsHeadNat.
rewrite TailConsNat, TailConsNat.
rewrite CoordConsTailNat, CoordConsHeadNat.
reflexivity.
Qed.
Lemma Subst_rel1 : forall u v r a,
Subst u v (Lrel1 r a) = Lrel1 r (SubstTerm u v a).
Proof.
intros.
unfold Lrel1. rewrite Subst_rel, MapConsNat, MapNilNat.
reflexivity.
Qed.
Lemma Subst_rel2 : forall u v r a b,
Subst u v (Lrel2 r a b)
= Lrel2 r (SubstTerm u v a) (SubstTerm u v b).
Proof.
intros.
unfold Lrel2. rewrite Subst_rel.
rewrite MapConsNat, MapConsNat, MapNilNat. reflexivity.
Qed.
Lemma Subst_eq : forall u v a b,
Subst u v (Leq a b)
= Leq (SubstTerm u v a) (SubstTerm u v b).
Proof.
intros. unfold Leq.
rewrite Subst_rel2. reflexivity.
Qed.
Lemma SubstIsLproposition : forall f,
IsLproposition f = true
-> forall u v, IsLterm u = true
-> IsLproposition (Subst u v f) = true.
Proof.
apply (Lproposition_rect
(fun prop => forall u v, IsLterm u = true
-> IsLproposition (Subst u v prop) = true)).
- (* Lrel *)
intros. rewrite Subst_rel, IsLproposition_rel.
split. rewrite LengthMapNat.
apply MapNatTruncated.
intros n H0. rewrite LengthMapNat in H0.
rewrite CoordMapNat.
apply IsSubstTermLterm.
apply elemterms, H0. exact H. exact H0.
- (* Lnot *)
intros. rewrite Subst_not, IsLproposition_not.
apply IHprop, H.
- (* Limplies *)
intros. rewrite Subst_implies, IsLproposition_implies.
rewrite IHg, IHh. reflexivity. exact H. exact H.
- (* Lor *)
intros. rewrite Subst_or, IsLproposition_or.
rewrite IHg, IHh. reflexivity. exact H. exact H.
- (* Land *)
intros. rewrite Subst_and, IsLproposition_and.
rewrite IHg, IHh. reflexivity. exact H. exact H.
- (* Lforall *)
intros. rewrite Subst_forall, IsLproposition_forall.
destruct (v =? v0). exact propprop. apply IHprop, H.
- (* Lexists *)
intros. rewrite Subst_exists, IsLproposition_exists.
destruct (v =? v0). exact propprop. apply IHprop, H.
Qed.
(* We reuse SubstTerm instead of redefining a new fold,
to extract less code in OCaml. *)
Definition VarOccursInTerm (v t : nat) : bool := negb (Nat.eqb (SubstTerm 0 v t) t).
Lemma VarOccursInTerm_opHead : forall v t,
CoordNat t 0 = LopHead
-> 2 <= LengthNat t
-> NthTailNat t (LengthNat t) = 0
-> (VarOccursInTerm v t = true (* i.e. SubstTerm 0 v t <> t *)
<-> exists j, j < pred (pred (LengthNat t))
/\ VarOccursInTerm v (CoordNat t (S (S j))) = true).
Proof.
intros v t top tlen ttrunc.
unfold VarOccursInTerm.
rewrite Bool.negb_true_iff. split.
- intro H0.
apply Nat.eqb_neq in H0.
rewrite SubstTerm_step in H0.
unfold TreeFoldNatRec in H0.
destruct (le_lt_dec (LengthNat t) 0).
rewrite (CoordNatAboveLength _ _ l) in top.
discriminate.
unfold SubstTermRec in H0.
rewrite top in H0.
destruct (TruncatedDiffNat (Lop (CoordNat t 1)
(MapNat (fun i : nat => SubstTerm 0 v (CoordNat t i))
(RangeNat 2 (LengthNat t - 2)))) t) as [k H].
rewrite LengthLop, LengthMapNat, LengthRangeNat.
rewrite Nat.add_comm, Nat.sub_add. reflexivity.
exact tlen. rewrite LengthLop.
rewrite LengthMapNat, LengthRangeNat, ttrunc.
unfold Lop. simpl. rewrite TailConsNat, TailConsNat.
rewrite <- (LengthRangeNat (LengthNat t - 2) 2) at 2.
apply MapNatTruncated. exact H0.
destruct H.
rewrite LengthLop, LengthMapNat, LengthRangeNat in H.
rewrite Nat.add_comm, Nat.sub_add in H. 2: exact tlen.
destruct k. exfalso.
unfold Lop in H1. rewrite CoordConsHeadNat in H1.
contradict H1. symmetry. exact top.
destruct k.
unfold Lop in H1. rewrite CoordConsTailNat, CoordConsHeadNat in H1.
contradict H1. reflexivity.
assert (k < LengthNat t - 2) as H2.
{ apply le_S_n, le_S_n.
change (S (S (LengthNat t - 2))) with (2+(LengthNat t -2)).
rewrite Nat.add_comm, Nat.sub_add. exact H. exact tlen. }
exists k. split.
rewrite Minus.pred_of_minus_stt.
rewrite Minus.pred_of_minus_stt.
rewrite <- Nat.sub_add_distr. exact H2.
rewrite CoordNat_op, CoordMapNat, CoordRangeNat in H1.
apply Nat.eqb_neq in H1. change (2+k) with (S (S k)) in H1.
rewrite H1. reflexivity.
exact H2. rewrite LengthRangeNat. exact H2.
- intros [j [H0 H1]].
apply Bool.negb_true_iff, Nat.eqb_neq in H1.
destruct (SubstTerm 0 v t =? t) eqn:des. 2: reflexivity.
exfalso. apply Nat.eqb_eq in des.
rewrite SubstTerm_step in des.
unfold TreeFoldNatRec in des.
destruct (le_lt_dec (LengthNat t) 0).
inversion l. rewrite (CoordNatAboveLength _ _ l) in top.
discriminate top.
rewrite Minus.pred_of_minus_stt in H0.
rewrite Minus.pred_of_minus_stt in H0.
rewrite <- Nat.sub_add_distr in H0.
unfold SubstTermRec in des. rewrite top in des.
apply (f_equal (fun n => CoordNat n (S (S j)))) in des.
rewrite CoordNat_op, CoordMapNat, CoordRangeNat in des.
contradict H1. exact des. exact H0.
rewrite LengthRangeNat. exact H0.
Qed.
Lemma VarOccursInTerm_const : forall v c,
VarOccursInTerm v (Lconst c) = false.
Proof.
intros. unfold Lconst.
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite SubstTerm_op. change (LengthNat NilNat) with 0. simpl.
rewrite MapNilNat. reflexivity.
Qed.
Lemma VarOccursInTerm_op1 : forall v o a,
VarOccursInTerm v (Lop1 o a) = VarOccursInTerm v a.
Proof.
intros. unfold VarOccursInTerm. apply f_equal.
unfold Lop1.
rewrite SubstTerm_op, MapConsNat, MapNilNat.
destruct (SubstTerm 0 v a =? a) eqn:des.
- apply Nat.eqb_eq in des. rewrite des. apply Nat.eqb_refl.
- apply Nat.eqb_neq. intro abs.
apply (f_equal (fun n => CoordNat n 2)) in abs.
rewrite CoordNat_op, CoordNat_op in abs.
rewrite CoordConsHeadNat, CoordConsHeadNat in abs.
apply Nat.eqb_neq in des. contradiction.
Qed.
Lemma VarOccursInTerm_op2 : forall v o a b,
VarOccursInTerm v (Lop2 o a b)
= (VarOccursInTerm v a || VarOccursInTerm v b)%bool.
Proof.
intros. unfold VarOccursInTerm.
unfold Lop2. rewrite SubstTerm_op.
rewrite MapConsNat, MapConsNat, MapNilNat.
destruct (SubstTerm 0 v a =? a) eqn:des.
- simpl. apply f_equal. apply Nat.eqb_eq in des. rewrite des. clear des.
destruct (SubstTerm 0 v b =? b) eqn:des.
+ apply Nat.eqb_eq in des. rewrite des. apply Nat.eqb_refl.
+ apply Nat.eqb_neq. intro abs.
apply (f_equal (fun n => CoordNat n 3)) in abs.
rewrite CoordNat_op, CoordNat_op in abs.
rewrite CoordConsTailNat, CoordConsHeadNat in abs.
rewrite CoordConsTailNat, CoordConsHeadNat in abs.
apply Nat.eqb_neq in des. contradiction.
- apply Bool.negb_true_iff. apply Nat.eqb_neq. intro abs.
apply (f_equal (fun n => CoordNat n 2)) in abs.
rewrite CoordNat_op, CoordNat_op in abs.
rewrite CoordConsHeadNat, CoordConsHeadNat in abs.
apply Nat.eqb_neq in des. contradiction.
Qed.
Lemma VarOccursInTerm_var : forall v t,
VarOccursInTerm v (Lvar t) = Nat.eqb v t.
Proof.
intros. unfold VarOccursInTerm.
rewrite SubstTerm_var, (Nat.eqb_sym t v).
destruct (v =? t).
2: rewrite Nat.eqb_refl; reflexivity.
apply Bool.negb_true_iff.
pose proof (LengthPositive (Lvar t)).
rewrite LengthLvar in H.
destruct (Lvar t). 2: reflexivity.
exfalso. apply (Nat.lt_irrefl 0), H.
apply le_n_S, le_S, Nat.le_refl.
Qed.
(* Ill-formed propositions are truncated by Subst, so all variables seem
to occur free in them. *)
Definition VarOccursFreeInFormula (v f : nat) : bool := negb (Nat.eqb (Subst 0 v f) f).
(* This Prop is actually a decidable bool *)
Definition IsClosedFormula (f : nat) : Prop :=
forall v:nat, VarOccursFreeInFormula v f = false.
Lemma VarOccursFreeInFormula_not : forall v f,
VarOccursFreeInFormula v (Lnot f) = VarOccursFreeInFormula v f.
Proof.
intros.
unfold VarOccursFreeInFormula.
rewrite Subst_not. apply f_equal.
destruct (Subst 0 v f =? f) eqn:des.
apply Nat.eqb_eq in des. rewrite des, Nat.eqb_refl. reflexivity.
apply Nat.eqb_neq. intro abs.
assert (CoordNat (Lnot (Subst 0 v f)) 1 = CoordNat (Lnot f) 1).
rewrite abs. reflexivity.
rewrite CoordNat_not_1, CoordNat_not_1 in H.
rewrite H, Nat.eqb_refl in des. discriminate.
Qed.
Lemma VarOccursFreeInFormula_implies : forall v f g,
VarOccursFreeInFormula v (Limplies f g)
= (VarOccursFreeInFormula v f || VarOccursFreeInFormula v g)%bool.
Proof.
intros.
unfold VarOccursFreeInFormula.
rewrite Subst_implies.
destruct (Subst 0 v f =? f) eqn:desf.
apply Nat.eqb_eq in desf. rewrite desf.
destruct (Subst 0 v g =? g) eqn:desg.
apply Nat.eqb_eq in desg. rewrite desg.
rewrite Nat.eqb_refl. reflexivity.
apply Bool.negb_true_iff, Nat.eqb_neq. intro abs.
assert (CoordNat (Limplies f (Subst 0 v g)) 2 = CoordNat (Limplies f g) 2).
rewrite abs. reflexivity.
rewrite CoordNat_implies_2, CoordNat_implies_2 in H.
rewrite H, Nat.eqb_refl in desg. discriminate.
apply Bool.negb_true_iff, Nat.eqb_neq. intro abs.
assert (CoordNat (Limplies (Subst 0 v f) (Subst 0 v g)) 1 = CoordNat (Limplies f g) 1).
rewrite abs. reflexivity.
rewrite CoordNat_implies_1, CoordNat_implies_1 in H.
rewrite H, Nat.eqb_refl in desf. discriminate.
Qed.
Lemma VarOccursFreeInFormula_or : forall v f g,
VarOccursFreeInFormula v (Lor f g)
= (VarOccursFreeInFormula v f || VarOccursFreeInFormula v g)%bool.
Proof.
intros.
unfold VarOccursFreeInFormula.
rewrite Subst_or.
destruct (Subst 0 v f =? f) eqn:desf.
apply Nat.eqb_eq in desf. rewrite desf.
destruct (Subst 0 v g =? g) eqn:desg.
apply Nat.eqb_eq in desg. rewrite desg.
rewrite Nat.eqb_refl. reflexivity.
apply Bool.negb_true_iff, Nat.eqb_neq. intro abs.
assert (CoordNat (Lor f (Subst 0 v g)) 2 = CoordNat (Lor f g) 2).
rewrite abs. reflexivity.
rewrite CoordNat_or_2, CoordNat_or_2 in H.
rewrite H, Nat.eqb_refl in desg. discriminate.
apply Bool.negb_true_iff, Nat.eqb_neq. intro abs.
assert (CoordNat (Lor (Subst 0 v f) (Subst 0 v g)) 1 = CoordNat (Lor f g) 1).
rewrite abs. reflexivity.
rewrite CoordNat_or_1, CoordNat_or_1 in H.
rewrite H, Nat.eqb_refl in desf. discriminate.
Qed.
Lemma VarOccursFreeInFormula_and : forall v f g,
VarOccursFreeInFormula v (Land f g)
= (VarOccursFreeInFormula v f || VarOccursFreeInFormula v g)%bool.
Proof.
intros.
unfold VarOccursFreeInFormula.
rewrite Subst_and.
destruct (Subst 0 v f =? f) eqn:desf.
apply Nat.eqb_eq in desf. rewrite desf.
destruct (Subst 0 v g =? g) eqn:desg.
apply Nat.eqb_eq in desg. rewrite desg.
rewrite Nat.eqb_refl. reflexivity.
apply Bool.negb_true_iff, Nat.eqb_neq. intro abs.
assert (CoordNat (Land f (Subst 0 v g)) 2 = CoordNat (Land f g) 2).
rewrite abs. reflexivity.
rewrite CoordNat_and_2, CoordNat_and_2 in H.
rewrite H, Nat.eqb_refl in desg. discriminate.
apply Bool.negb_true_iff, Nat.eqb_neq. intro abs.
assert (CoordNat (Land (Subst 0 v f) (Subst 0 v g)) 1 = CoordNat (Land f g) 1).
rewrite abs. reflexivity.
rewrite CoordNat_and_1, CoordNat_and_1 in H.
rewrite H, Nat.eqb_refl in desf. discriminate.
Qed.
Lemma VarOccursFreeInFormula_equiv : forall v f g,
VarOccursFreeInFormula v (Lequiv f g)
= (VarOccursFreeInFormula v f || VarOccursFreeInFormula v g)%bool.
Proof.
intros. unfold Lequiv.
rewrite VarOccursFreeInFormula_and, VarOccursFreeInFormula_implies.
rewrite VarOccursFreeInFormula_implies.
destruct (VarOccursFreeInFormula v f), (VarOccursFreeInFormula v g); reflexivity.
Qed.
Lemma VarOccursFreeInFormula_forallHead : forall v f,
CoordNat f 0 = LforallHead
-> VarOccursFreeInFormula v f
= negb (Lforall (CoordNat f 1) (if CoordNat f 1 =? v then CoordNat f 2
else (Subst 0 v (CoordNat f 2)))
=? f).
Proof.
intros.
unfold VarOccursFreeInFormula.
rewrite (Subst_forallHead _ _ f H).
reflexivity.
Qed.
Lemma VarOccursFreeInFormula_forall : forall v k f,
VarOccursFreeInFormula v (Lforall k f)
= (negb (Nat.eqb v k) && VarOccursFreeInFormula v f)%bool.
Proof.
intros.
unfold VarOccursFreeInFormula.
rewrite Subst_forall.
rewrite (Nat.eqb_sym k v). destruct (v =? k).
rewrite Nat.eqb_refl. reflexivity.
simpl.
destruct (Subst 0 v f =? f) eqn:des.
apply Nat.eqb_eq in des. rewrite des, Nat.eqb_refl. reflexivity.
apply f_equal, Nat.eqb_neq. intro abs.
assert (CoordNat (Lforall k (Subst 0 v f)) 2 = CoordNat (Lforall k f) 2).
rewrite abs. reflexivity.
rewrite CoordNat_forall_2, CoordNat_forall_2 in H.
rewrite H, Nat.eqb_refl in des. discriminate.
Qed.
Lemma VarOccursFreeInFormula_existsHead : forall v f,
CoordNat f 0 = LexistsHead
-> VarOccursFreeInFormula v f
= negb (Lexists (CoordNat f 1) (if CoordNat f 1 =? v then CoordNat f 2
else (Subst 0 v (CoordNat f 2)))
=? f).
Proof.
intros.
unfold VarOccursFreeInFormula.
rewrite (Subst_existsHead _ _ f H).
reflexivity.
Qed.
Lemma VarOccursFreeInFormula_exists : forall v k f,
VarOccursFreeInFormula v (Lexists k f)
= (negb (Nat.eqb v k) && VarOccursFreeInFormula v f)%bool.
Proof.
intros.
unfold VarOccursFreeInFormula.
rewrite Subst_exists.
rewrite (Nat.eqb_sym k v). destruct (v =? k).
rewrite Nat.eqb_refl. reflexivity.
simpl.
destruct (Subst 0 v f =? f) eqn:des.
apply Nat.eqb_eq in des. rewrite des, Nat.eqb_refl. reflexivity.
apply f_equal, Nat.eqb_neq. intro abs.
assert (CoordNat (Lexists k (Subst 0 v f)) 2 = CoordNat (Lexists k f) 2).
rewrite abs. reflexivity.
rewrite CoordNat_exists_2, CoordNat_exists_2 in H.
rewrite H, Nat.eqb_refl in des. discriminate.
Qed.
Lemma VarOccursFreeInFormula_rel : forall v r args,
NthTailNat args (LengthNat args) = 0 ->
(VarOccursFreeInFormula v (Lrel r args) = true
<-> (exists j, j < LengthNat args /\ VarOccursInTerm v (CoordNat args j) = true)).
Proof.
intros v r args argstrunc.
split.
- intro H. unfold VarOccursFreeInFormula in H.
apply Bool.negb_true_iff, Nat.eqb_neq in H.
rewrite Subst_rel in H.
assert (MapNat (SubstTerm 0 v) args <> args).
{ intro abs. rewrite abs in H. apply H. reflexivity. } clear H.
apply MapNatDiff in H0.
destruct H0. exists x. destruct a.
split. exact H.
apply Bool.negb_true_iff, Nat.eqb_neq, H0. exact argstrunc.
- intros [j [H H0]]. unfold VarOccursFreeInFormula.
apply Bool.negb_true_iff, Nat.eqb_neq.
intro abs. rewrite Subst_rel in abs.
unfold VarOccursInTerm in H0.
apply Bool.negb_true_iff, Nat.eqb_neq in H0.
contradict H0.
assert (CoordNat (Lrel r (MapNat (SubstTerm 0 v) args)) (2+j)
= CoordNat (Lrel r args) (2+j))
by (rewrite abs; reflexivity).
rewrite (CoordNat_rel _ _ j), (CoordNat_rel _ _ j) in H0.
rewrite CoordMapNat in H0.
exact H0. exact H.
Qed.
Lemma VarOccursFreeInFormula_rel2 : forall v r a b,
VarOccursFreeInFormula v (Lrel2 r a b)
= (VarOccursInTerm v a || VarOccursInTerm v b)%bool.
Proof.
intros. unfold Lrel2.
unfold VarOccursFreeInFormula.
rewrite Subst_rel, MapConsNat, MapConsNat, MapNilNat.
unfold VarOccursInTerm.
destruct (SubstTerm 0 v a =? a) eqn:des.
- simpl. apply f_equal.
apply Nat.eqb_eq in des. rewrite des. clear des.
destruct (SubstTerm 0 v b =? b) eqn:des.
+ apply Nat.eqb_eq in des. rewrite des. apply Nat.eqb_refl.
+ apply Nat.eqb_neq. intro abs.
apply (f_equal (fun n => CoordNat n 3)) in abs.
rewrite CoordNat_rel, CoordNat_rel in abs.
rewrite CoordConsTailNat, CoordConsTailNat in abs.
rewrite CoordConsHeadNat, CoordConsHeadNat in abs.
apply Nat.eqb_neq in des. contradiction.
- apply Bool.negb_true_iff, Nat.eqb_neq. intro abs.
apply (f_equal (fun n => CoordNat n 2)) in abs.
rewrite CoordNat_rel, CoordNat_rel in abs.
rewrite CoordConsHeadNat, CoordConsHeadNat in abs.
apply Nat.eqb_neq in des. contradiction.
Qed.
Lemma SubstTerm_nosubst : forall v t u,
VarOccursInTerm v t = false (* i.e. SubstTerm 0 v t = t *)
-> SubstTerm u v t = t.
Proof.
intros v.
apply (Fix lt_wf (fun t => forall u,
VarOccursInTerm v t = false
-> SubstTerm u v t = t)).
intros t IHt u nosubst.
rewrite SubstTerm_step.
unfold TreeFoldNatRec.
apply Bool.negb_false_iff, Nat.eqb_eq in nosubst.
rewrite SubstTerm_step in nosubst.
unfold TreeFoldNatRec in nosubst.
destruct (le_lt_dec (LengthNat t) 0). exact nosubst.
unfold SubstTermRec.
unfold SubstTermRec in nosubst.
destruct (CoordNat t 0) eqn:headT. exact nosubst.
do 7 (destruct n; [exact nosubst|]).
destruct n.
- (* Lop *)
rewrite <- nosubst at 3. apply f_equal.
apply MapNatExt. intros k H.
rewrite LengthRangeNat in H.
rewrite CoordRangeNat. 2: exact H.
apply (f_equal (fun a => CoordNat a (S (S k)))) in nosubst.
rewrite CoordNat_op, CoordMapNat, CoordRangeNat in nosubst.
rewrite nosubst. apply IHt.
exact (CoordLower _ _ (LengthPositive _ l)).
unfold VarOccursInTerm. change (S (S k)) with (2+k).
rewrite nosubst, Nat.eqb_refl. reflexivity.
exact H.
rewrite LengthRangeNat. exact H.
- (* Lvariable *)
destruct n. 2: exact nosubst.
destruct (CoordNat t 1 =? v). 2: reflexivity.
exfalso. rewrite <- nosubst in headT. inversion headT.
Qed.
Lemma Subst_nosubst : forall f v u,
VarOccursFreeInFormula v f = false
-> Subst u v f = f.
Proof.
apply (Fix lt_wf (fun f => forall v u,
VarOccursFreeInFormula v f = false -> Subst u v f = f)).
intros f IHf v u nosubst.
rewrite Subst_step.
unfold TreeFoldNatRec.
apply Bool.negb_false_iff, Nat.eqb_eq in nosubst.
rewrite Subst_step in nosubst.
unfold TreeFoldNatRec in nosubst.
destruct (le_lt_dec (LengthNat f) 0). exact nosubst.
unfold SubstRec. unfold SubstRec in nosubst.
destruct (CoordNat f 0) eqn:headF. exact nosubst.
destruct n.
(* Lnot *)
rewrite IHf.
rewrite IHf in nosubst. exact nosubst.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_not_1. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_not_1. reflexivity.
destruct n.
(* Limplies *)
rewrite IHf, IHf. rewrite IHf, IHf in nosubst. exact nosubst.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_implies_2. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_implies_1. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_implies_2. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_implies_1. reflexivity.
destruct n.
(* Lor *)
rewrite IHf, IHf. rewrite IHf, IHf in nosubst. exact nosubst.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_or_2. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_or_1. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_or_2. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_or_1. reflexivity.
destruct n.
(* Land *)
rewrite IHf, IHf. rewrite IHf, IHf in nosubst. exact nosubst.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_and_2. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_and_1. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_and_2. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_and_1. reflexivity.
destruct n.
(* Lforall *)
destruct (CoordNat f 1 =? v) eqn:des. exact nosubst.
rewrite IHf.
rewrite IHf in nosubst. exact nosubst.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_forall_2. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_forall_2. reflexivity.
destruct n.
(* Lexists *)
destruct (CoordNat f 1 =? v) eqn:des. exact nosubst.
rewrite IHf.
rewrite IHf in nosubst. exact nosubst.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_exists_2. reflexivity.
exact (CoordLower _ _ (LengthPositive _ l)).
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite <- nosubst at 2.
rewrite CoordNat_exists_2. reflexivity.
destruct n.
(* Lrel *)
2: exact nosubst.
clear IHf.
rewrite <- nosubst at 3.
apply f_equal.
assert (MapNat (SubstTerm 0 v) (TailNat (TailNat f)) = TailNat (TailNat f)) as H.
{ apply (f_equal (fun n => TailNat (TailNat n))) in nosubst.
unfold Lrel in nosubst.
rewrite TailConsNat, TailConsNat in nosubst. exact nosubst. }
rewrite H.
apply TruncatedEqNat.
rewrite LengthMapNat. reflexivity.
rewrite LengthMapNat, MapNatTruncated.
rewrite <- H at 1. rewrite MapNatTruncated. reflexivity.
intros j H0. rewrite LengthMapNat in H0.
rewrite CoordMapNat. 2: exact H0.
rewrite CoordTailNat, CoordTailNat.
rewrite SubstTerm_nosubst. reflexivity.
apply Bool.negb_false_iff, Nat.eqb_eq.
apply (f_equal (fun n => CoordNat n (S (S j)))) in nosubst.
rewrite CoordNat_rel, CoordMapNat in nosubst. exact nosubst. exact H0.
Qed.
Lemma SubstSubstTermNested : forall term,
IsLterm term = true
-> forall t u v w, VarOccursInTerm v term = false
-> SubstTerm t v (SubstTerm u w term) = SubstTerm (SubstTerm t v u) w term.
Proof.
apply (Lterm_rect (fun term => forall t u v w, VarOccursInTerm v term = false
-> SubstTerm t v (SubstTerm u w term) = SubstTerm (SubstTerm t v u) w term)).
- (* Lvar *)
intros. rewrite SubstTerm_var, SubstTerm_var.
destruct (v =? w). reflexivity.
rewrite VarOccursInTerm_var in H.
rewrite SubstTerm_var, Nat.eqb_sym, H. reflexivity.
- (* Lop *)
intros. rewrite SubstTerm_op, SubstTerm_op, SubstTerm_op.
apply f_equal. rewrite MapMapNat.
apply MapNatExt.
intros n H0. apply IHterms. exact H0.
apply Bool.negb_false_iff, Nat.eqb_eq in H.
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite SubstTerm_op in H.
apply (f_equal (fun a => CoordNat a (S (S n)))) in H.
rewrite CoordNat_op, CoordNat_op, CoordMapNat in H. exact H. exact H0.
Qed.
Lemma SubstTermsNested : forall (r terms t u v w : nat),
(forall i : nat, i < LengthNat terms -> IsLterm (CoordNat terms i) = true)
-> VarOccursFreeInFormula v (Lrel r terms) = false
-> MapNat (SubstTerm t v) (MapNat (SubstTerm u w) terms)
= MapNat (SubstTerm (SubstTerm t v u) w) terms.
Proof.
intros. rewrite MapMapNat.
apply MapNatExt. intros j H1.
rewrite SubstSubstTermNested. reflexivity.
apply H. exact H1.
apply Bool.negb_false_iff, Nat.eqb_eq in H0.
apply Bool.negb_false_iff, Nat.eqb_eq.
rewrite Subst_rel in H0.
apply (f_equal (fun a => CoordNat a (S (S j)))) in H0.
rewrite CoordNat_rel, CoordNat_rel, CoordMapNat in H0. exact H0. exact H1.
Qed.
Lemma VarOccursInTermVarChange : forall term,
IsLterm term = true
-> forall v w, VarOccursInTerm v term = false
-> VarOccursInTerm v (SubstTerm (Lvar v) w term) = VarOccursInTerm w term.
Proof.
apply (Lterm_rect (fun term => forall v w, VarOccursInTerm v term = false
-> VarOccursInTerm v (SubstTerm (Lvar v) w term) = VarOccursInTerm w term)).
- (* Lvar *)
intros. rewrite SubstTerm_var, VarOccursInTerm_var.
destruct (v =? w) eqn:des.
apply Nat.eqb_eq in des. subst w.
rewrite VarOccursInTerm_var, Nat.eqb_refl, Nat.eqb_refl. reflexivity.
rewrite H, Nat.eqb_sym, des. reflexivity.
- (* Lop *)
intros.
assert (forall a b : bool, ((a = true) <-> (b = true)) -> a = b).
{ intros. destruct H0. destruct a. symmetry. apply H0. reflexivity.
destruct b. 2: reflexivity. apply H1. reflexivity. }
apply H0. clear H0.