-
Notifications
You must be signed in to change notification settings - Fork 35
/
run_s2vt.py
431 lines (341 loc) · 18.1 KB
/
run_s2vt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
'''
A short script to train and evaluate s2vt model on Flickr30k and
MSR-VTT datasets.
Usage:
python run_s2vt.py --dataset [MSR-VTT|Flickr30k] --train
python run_s2vt.py --dataset [MSR-VTT|Flickr30k] --test --checkpoint model_num
'''
from cfg import *
import os
import pandas as pd
import numpy as np
import pickle as pkl
import json
from tqdm import tqdm
import argparse
from pandas.io.json import json_normalize
from cocoeval import COCOScorer, suppress_stdout_stderr
import sys
from s2vt_model import *
cfg = None
def get_flickr30k_data(cfg):
#using the provided splits
train_split = set(map(lambda x: x.split(".")[0], open(cfg.train_file).read().splitlines()))
val_split = set(map(lambda x: x.split(".")[0], open(cfg.val_file).read().splitlines()))
test_split = set(map(lambda x: x.split(".")[0], open(cfg.test_file).read().splitlines()))
data = [{"video_id": item.split(".")[0], "sentence_id": item.split("#")[1].split("\t")[0], "caption":item.split("\t")[1]}
for item in open(cfg.annotations_path).read().splitlines()]
sentences = json_normalize(data)
sentences['video_path'] = sentences['video_id'].map(lambda x: os.path.join(cfg.path_to_descriptors, x + cfg.descriptor_suffix + ".npy"))
train_imgs = sentences.loc[sentences["video_id"].isin(train_split)]
train_imgs.reset_index()
val_imgs = sentences.loc[sentences["video_id"].isin(val_split)]
val_imgs.reset_index()
test_imgs = sentences.loc[sentences["video_id"].isin(test_split)]
test_imgs.reset_index()
return train_imgs, val_imgs, test_imgs
def get_msr_vtt_data(cfg):
#trainval data
with open(cfg.trainval_annotations) as data_file:
data = json.load(data_file)
sentences = json_normalize(data['sentences'])
videos = json_normalize(data['videos'])
train_vids = sentences.loc[sentences["video_id"].isin(videos[videos['split'] == "train"]["video_id"])]
val_vids = sentences.loc[sentences["video_id"].isin(videos[videos['split'] == "validate"]["video_id"])]
train_vids['video_path'] = train_vids['video_id'].map(lambda x: os.path.join(cfg.path_to_trainval_descriptors, x + "_incp_v3.npy"))
val_vids['video_path'] = val_vids['video_id'].map(lambda x: os.path.join(cfg.path_to_trainval_descriptors, x + "_incp_v3.npy"))
#test data
with open(cfg.test_annotations) as data_file:
data = json.load(data_file)
sentences = json_normalize(data['sentences'])
videos = json_normalize(data['videos'])
test_vids = sentences.loc[sentences["video_id"].isin(videos[videos['split'] == "test"]["video_id"])]
test_vids['video_path'] = test_vids['video_id'].map(lambda x: os.path.join(cfg.path_to_test_descriptors, x + "_incp_v3.npy"))
return train_vids, val_vids, test_vids
def preProBuildWordVocab(sentence_iterator, word_count_threshold=5): # borrowed this function from NeuralTalk
print 'preprocessing word counts and creating vocab based on word count threshold %d' % (word_count_threshold, )
word_counts = {}
nsents = 0
for sent in sentence_iterator:
nsents += 1
for w in sent.lower().split(' '):
word_counts[w] = word_counts.get(w, 0) + 1
vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold]
print 'filtered words from %d to %d' % (len(word_counts), len(vocab))
ixtoword = {}
ixtoword[0] = '.' # period at the end of the sentence. make first dimension be end token
wordtoix = {}
wordtoix['#START#'] = 0 # make first vector be the start token
ix = 1
for w in vocab:
wordtoix[w] = ix
ixtoword[ix] = w
ix += 1
word_counts['.'] = nsents
bias_init_vector = np.array([1.0*word_counts[ixtoword[i]] for i in ixtoword])
bias_init_vector /= np.sum(bias_init_vector) # normalize to frequencies
bias_init_vector = np.log(bias_init_vector)
bias_init_vector -= np.max(bias_init_vector) # shift to nice numeric range
return wordtoix, ixtoword, bias_init_vector
def output_progress(current, total, loss):
bar_length = 20
progress = current/float(total)
sys.stdout.write('\r')
sys.stdout.write(("[%-" + str(bar_length) + "s] %d/%d") % ('='* int(bar_length * progress) + ">", current, total) + ", avg_loss=" + str(loss))
sys.stdout.flush()
#populate feature dictionary
#unroll features for LSTM encoding
feature_dict = {}
def load_flickr30k_features(vid):
if vid in feature_dict:
return feature_dict[vid]
else:
temp_array = np.load(vid)
temp_array[1::2][:] = temp_array[1::2][:, ::-1][:]
if cfg.use_hard_cache:
feature_dict[vid] = temp_array.reshape(cfg.n_frame_step, -1)
return feature_dict[vid]
else:
return temp_array.reshape(cfg.n_frame_step, -1)
def load_msr_vtt_features(vid):
return np.load(vid)
def get_validation_loss(sess, current_val_data, wordtoix, tf_loss, tf_video, tf_caption, tf_caption_mask):
val_data = current_val_data
val_captions = val_data['caption'].values
val_captions = map(lambda x: x.replace('.', ''), val_captions)
val_captions = map(lambda x: x.replace(',', ''), val_captions)
combine_features = load_flickr30k_features if cfg.id == "Flickr30k" else load_msr_vtt_features
loss_on_validation = []
for start,end in zip(
range(0, len(val_data), cfg.batch_size),
range(cfg.batch_size, len(val_data)+1, cfg.batch_size)): #during every epoch we are discarding incomplete batch in the end
current_batch = val_data[start:end]
current_videos = current_batch['video_path'].values
current_feats = np.zeros((cfg.batch_size, cfg.n_frame_step, cfg.dim_image))
current_feats_vals = map(lambda vid: combine_features(vid), current_videos)
for ind,feat in enumerate(current_feats_vals):
current_feats[ind][:len(current_feats_vals[ind])] = feat
current_captions = current_batch['caption'].values
current_caption_ind = map(lambda cap: [wordtoix[word] for word in cap.lower().split(' ')[:cfg.n_lstm_step - 1]
if word in wordtoix],
current_captions)
current_caption_matrix = np.zeros((cfg.batch_size, cfg.n_lstm_step))
current_caption_masks = np.zeros((cfg.batch_size, cfg.n_lstm_step))
for ind, row in enumerate(current_caption_masks):
valid_length = len(current_caption_ind[ind])
row[:valid_length] = 1
current_caption_matrix[ind, :valid_length] = current_caption_ind[ind]
loss_val = sess.run(tf_loss,
feed_dict={
tf_video: current_feats,
tf_caption: current_caption_matrix,
tf_caption_mask: current_caption_masks
})
loss_on_validation.append(loss_val)
return np.mean(loss_on_validation)
def train():
if not os.path.exists(cfg.model_path):
os.makedirs(cfg.model_path)
print cfg.model_path
f = open(cfg.model_path + "loss", "a", 1)
f.write("Checkpoint\tTrain loss\tValidation loss\n")
if cfg.id == "Flickr30k":
train_data, val_data, _ = get_flickr30k_data(cfg)
elif cfg.id == "MSR-VTT":
train_data, val_data, _ = get_msr_vtt_data(cfg)
#FIXME add validation data vocabulary
captions = train_data['caption'].values
captions = map(lambda x: x.replace('.', ''), captions)
captions = map(lambda x: x.replace(',', ''), captions)
wordtoix, ixtoword, bias_init_vector = preProBuildWordVocab(captions, word_count_threshold=cfg.word_count_threshold)
combine_features = load_flickr30k_features if cfg.id == "Flickr30k" else load_msr_vtt_features
np.save(cfg.vocab_path + 'ixtoword', ixtoword)
with open(cfg.vocab_path + 'wordtoix.pkl', 'wb') as outfile:
pkl.dump(wordtoix, outfile)
sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options))
with tf.variable_scope(tf.get_variable_scope()):
model_train = s2vt(dim_image=cfg.dim_image,
n_words=len(ixtoword),
dim_hidden=cfg.dim_hidden,
batch_size=cfg.batch_size,
n_frame_steps=cfg.n_frame_step,
n_lstm_steps=cfg.n_lstm_step,
dim_word_emb = cfg.dim_word_emb,
cell_clip = cfg.cell_clip,
forget_bias = cfg.forget_bias,
input_keep_prob = cfg.input_keep_prob,
output_keep_prob = cfg.output_keep_prob,
bias_init_vector=bias_init_vector)
tf_loss, tf_video, tf_caption, tf_caption_mask, _ = model_train.build_model("training")
with tf.variable_scope(tf.get_variable_scope(), reuse=False):
train_op = tf.train.AdamOptimizer(cfg.learning_rate).minimize(tf_loss)
saver = tf.train.Saver(max_to_keep=cfg.max_to_keep)
sess.run(tf.global_variables_initializer())
model_counter = 0
val_loss = None
for epoch in range(cfg.n_epochs):
index = list(train_data.index)
np.random.shuffle(index)
train_data = train_data.ix[index]
current_train_data = train_data
total_loss = 0
saving_schedule = []
loss_accumulator = []
step_size = (int(len(current_train_data) * cfg.save_every_n_epoch) // cfg.batch_size ) * cfg.batch_size
saving_schedule = range(0, len(current_train_data) - step_size, step_size)
print saving_schedule
for start,end in zip(
range(0, len(current_train_data), cfg.batch_size),
range(cfg.batch_size, len(current_train_data)+1, cfg.batch_size)):
current_batch = current_train_data[start:end]
current_videos = current_batch['video_path'].values
current_feats = np.zeros((cfg.batch_size, cfg.n_frame_step, cfg.dim_image))
current_feats_vals = map(lambda vid: combine_features(vid), current_videos)
for ind,feat in enumerate(current_feats_vals):
current_feats[ind][:len(current_feats_vals[ind])] = feat
current_captions = current_batch['caption'].values
current_caption_ind = map(lambda cap: [wordtoix[word] for word in cap.lower().split(' ')[:cfg.n_lstm_step - 1]
if word in wordtoix],
current_captions)
current_caption_matrix = np.zeros((cfg.batch_size, cfg.n_lstm_step))
current_caption_masks = np.zeros((cfg.batch_size, cfg.n_lstm_step))
for ind, row in enumerate(current_caption_masks):
valid_length = len(current_caption_ind[ind])
row[:valid_length+1] = 1 #forces to predict <EOS> = 0
current_caption_matrix[ind, :valid_length] = current_caption_ind[ind]
_, train_loss = sess.run(
[train_op, tf_loss],
feed_dict={
tf_video: current_feats,
tf_caption: current_caption_matrix,
tf_caption_mask: current_caption_masks
})
total_loss += train_loss
loss_accumulator.append(train_loss)
output_progress(end, len(current_train_data), train_loss)
if start in saving_schedule:
print start
train_loss = np.mean(loss_accumulator[-5:])
val_loss = get_validation_loss(sess,
val_data.groupby('video_id').apply(lambda x: x.iloc[np.random.choice(len(x))]),
wordtoix, tf_loss, tf_video,
tf_caption, tf_caption_mask)
f.write(str(model_counter) + "\t" + str(train_loss) +"\t" + str(val_loss) + "\n")
sys.stdout.flush()
saver.save(sess, os.path.join(cfg.model_path, 'model'), global_step=model_counter)
model_counter+=1
output_progress(end, len(current_train_data), np.mean(loss_accumulator[-5:]))
print " Done. Validation loss = " + str(val_loss)
def convert_data_to_coco_scorer_format(data_frame):
gts = {}
non_ascii_count = 0
for row in zip(data_frame["caption"], data_frame["video_id"]):
try:
row[0].encode('ascii', 'ignore').decode('ascii')
except UnicodeDecodeError:
non_ascii_count+=1
continue
if row[1] in gts:
gts[row[1]].append({u'image_id': row[1], u'cap_id': len(gts[row[1]]), u'caption':row[0].encode('ascii', 'ignore').decode('ascii')})
else:
gts[row[1]] = []
gts[row[1]].append({u'image_id': row[1], u'cap_id': len(gts[row[1]]), u'caption':row[0].encode('ascii', 'ignore').decode('ascii')})
if non_ascii_count:
print "=" * 20 + "\n" + "non-ascii: " + str(non_ascii_count) + "\n" + "=" * 20
return gts
def test(saved_model=''):
scorer = COCOScorer()
ixtoword = pd.Series(np.load(cfg.vocab_path + 'ixtoword.npy').tolist())
combine_features = load_flickr30k_features if cfg.id == "Flickr30k" else load_msr_vtt_features
model = s2vt(dim_image=cfg.dim_image,
n_words=len(ixtoword),
dim_hidden=cfg.dim_hidden,
batch_size=cfg.batch_size,
n_frame_steps=cfg.n_frame_step,
n_lstm_steps=cfg.n_lstm_step,
dim_word_emb = cfg.dim_word_emb,
cell_clip = cfg.cell_clip,
forget_bias = cfg.forget_bias,
input_keep_prob = cfg.input_keep_prob,
output_keep_prob = cfg.output_keep_prob,
bias_init_vector=None)
_, video_tf, caption_tf, _, _ = model.build_model("inference")
session = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options))
saver = tf.train.Saver()
saver.restore(session, saved_model)
if cfg.id == "Flickr30k":
_, _, test_data = get_flickr30k_data(cfg)
elif cfg.id == "MSR-VTT":
_, _, test_data = get_msr_vtt_data(cfg)
splits = []
splits.append((test_data['video_path'].unique(), test_data))
results = []
for split, gt_dataframe in splits:
gts = convert_data_to_coco_scorer_format(gt_dataframe)
samples = {}
for start,end in zip(
range(0, len(split), cfg.batch_size),
range(cfg.batch_size, len(split) + cfg.batch_size, cfg.batch_size)):
current_batch = split[start:end]
current_feats = np.zeros((cfg.batch_size, cfg.n_frame_step, cfg.dim_image))
current_feats_vals = [combine_features(vid) for vid in current_batch]
for ind,feat in enumerate(current_feats_vals):
current_feats[ind][:len(current_feats_vals[ind])] = feat
generated_word_index = session.run(caption_tf, feed_dict={video_tf:current_feats})
generated_word_index = np.asarray(generated_word_index).transpose()
periods = np.argmax(generated_word_index == 0, axis=1) + 1
periods[periods == 0] = cfg.n_lstm_step #take the whole sequence if a period was not produced
for i in range(len(current_batch)):
generated_sentence = ' '.join(ixtoword[generated_word_index[i, :periods[i]-1]])
video_id = current_batch[i].split("/")[-1].split("_")[0] #+ ".jpg"
samples[video_id] = [{u'image_id': video_id, u'caption': generated_sentence}]
with suppress_stdout_stderr():
valid_score = scorer.score(gts, samples, samples.keys())
results.append(valid_score)
print valid_score
print len(samples)
if not os.path.exists(cfg.results_path):
os.makedirs(cfg.results_path)
with open(cfg.results_path + "scores.txt", 'a') as scores_table:
scores_table.write(json.dumps(results[0]) + "\n")
with open(cfg.results_path + saved_model.split("/")[-1] + ".json", 'w') as prediction_results:
json.dump({"predictions": samples, "scores": valid_score}, prediction_results)
def main(args):
global cfg
if args.dataset == "Flickr30k":
cfg = flickr_cfg()
elif args.dataset == "MSR-VTT":
cfg = msr_vtt_cfg()
else:
print "Unknown dataset"
exit(1)
if args.train_stage:
train()
else:
test(saved_model=cfg.model_path + 'model-' + str(args.checkpoint))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Script to train a model for movie description')
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--train', dest='train_stage', action='store_true',
help='Training')
group.add_argument('--test', dest='train_stage', action='store_false',
help='Testing')
parser.add_argument('--checkpoint', dest='checkpoint', type = int, default = -1,
help='Provide a number of the saved model to run testing only on one snapshot')
parser.add_argument("--dataset", dest='dataset', type=str,
help='Specify one from {Flickr30k, MSR-VTT}')
parser.add_argument("--gpu", dest='gpu', type=str, required=False,
help='Set CUDA_VISIBLE_DEVICES environment variable, optional')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
else:
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
if not args.dataset:
parser.print_help()
exit(1)
if not args.train_stage:
if args.checkpoint is None:
parser.print_help()
exit(1)
main(args)