-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
151 lines (123 loc) · 4.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
Add support for T3A Wrapper
"""
import os
import torch
import argparse
from pathlib import Path
import numpy as np
import glob
import shutil
from datasets import DataInterface
from utils.utils import *
# pytorch_lightning
import pytorch_lightning as pl
from pytorch_lightning import Trainer
#--->Setting parameters
def make_parse():
parser = argparse.ArgumentParser()
parser.add_argument('--stage', default='train', type=str)
parser.add_argument('--fold', default=0, type=int)
parser.add_argument('--config', type=str)
parser.add_argument('--gpus')
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
return args
#---->main
def main(cfg):
#---->Initialize seed
pl.seed_everything(cfg.General.seed)
# pl.seed_everything(41)
#---->load loggers
cfg.load_loggers = load_loggers(cfg)
#---->load callbacks
cfg.callbacks = load_callbacks(cfg)
#---->Define Data
DataInterface_dict = {'train_batch_size': cfg.Data.train_dataloader.batch_size,
'train_num_workers': cfg.Data.train_dataloader.num_workers,
'test_batch_size': cfg.Data.test_dataloader.batch_size,
'test_num_workers': cfg.Data.test_dataloader.num_workers,
'dataset_name': cfg.Data.dataset_name,
'dataset_cfg': cfg.Data,}
dm = DataInterface(**DataInterface_dict)
#---->Define Model
ModelInterface_dict = {'model': cfg.Model,
'loss': cfg.Loss,
'optimizer': cfg.Optimizer,
'data': cfg.Data,
'log': cfg.log_path,
'external_test': cfg.Data.external,
}
if cfg.Data.get('survival', False):
from models.model_interface_survival import ModelInterface
model = ModelInterface(**ModelInterface_dict)
else:
from models import ModelInterface
model = ModelInterface(**ModelInterface_dict)
shutil.copy(os.path.join('models', f'{cfg.Model.name}.py'), cfg.log_path)
deterministic_flag = False
#---->Instantiate Trainer
trainer = Trainer(
num_sanity_val_steps=0,
logger=cfg.load_loggers,
callbacks=cfg.callbacks,
max_epochs= cfg.General.epochs,
gpus=cfg.General.gpus,
deterministic=deterministic_flag,
check_val_every_n_epoch=1,
gradient_clip_val= cfg.Optimizer.grad_clip if cfg.Optimizer.grad_clip else 0,
)
if not deterministic_flag:
pass
# os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
# torch.use_deterministic_algorithms(True, warn_only=True)
#---->train or test
if cfg.General.server == 'train':
trainer.fit(model = model, datamodule = dm)
else:
model_paths = list(cfg.log_path.glob('*.ckpt'))
model_paths = [str(model_path) for model_path in model_paths if cfg.General.monitor in str(model_path)]
best_metric = 0 if cfg.General.mode == 'max' else 0x3f3f3f3f # big number
best_model_path = None
for model_path in model_paths:
metric = float(model_path.split(f'{cfg.General.monitor}=')[1].split('.ckpt')[0].split('v')[0].split('-')[0])
print(f'{metric=},{best_metric=}')
if cfg.General.mode == 'max':
if metric > best_metric:
best_metric = metric
best_model_path = model_path
elif cfg.General.mode == 'min':
if metric < best_metric:
best_metric = metric
best_model_path = model_path
else:
raise NotImplementedError
trainer = Trainer(
num_sanity_val_steps=0,
logger=None,
callbacks=cfg.callbacks,
max_epochs= cfg.General.epochs,
gpus=cfg.General.gpus,
deterministic=deterministic_flag,
check_val_every_n_epoch=1,
gradient_clip_val= cfg.Optimizer.grad_clip if cfg.Optimizer.grad_clip else 0,
)
for path in [best_model_path]:
new_model = model.load_from_checkpoint(checkpoint_path=path, cfg=cfg, log=cfg.log_path) # LightningModule
trainer.test(model=new_model, datamodule=dm)
# one trainer instance cannot be used twice
break
if len(model_paths) > 1:
print(f'\n\033[1;31mMultiple Checkpoints found, only using the best {best_model_path}!\033[0m\n')
if __name__ == '__main__':
args = make_parse()
cfg = read_yaml(args.config)
#---->update
cfg.Data.fold = args.fold
cfg.config = args.config
cfg.General.gpus = args.gpus
cfg.General.server = args.stage
if args.seed:
cfg.General.seed = args.seed
#---->main
main(cfg)