-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
166 lines (130 loc) · 5.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import torch
import torch.nn.functional as F
from torch.autograd import Variable
palette = [128, 64, 128, 244, 35, 232, 70, 70, 70, 102, 102, 156, 190, 153, 153, 153, 153, 153, 250, 170, 30,
220, 220, 0, 107, 142, 35, 152, 251, 152, 70, 130, 180, 220, 20, 60, 255, 0, 0, 0, 0, 142, 0, 0, 70,
0, 60, 100, 0, 80, 100, 0, 0, 230, 119, 11, 32]
zero_pad = 256 * 3 - len(palette)
for i in range(zero_pad):
palette.append(0)
def colorize_mask(mask):
# mask: numpy array of the mask
new_mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
new_mask.putpalette(palette)
return new_mask
def save_segmap(map, save_path, name):
output = map.cpu().data[0].numpy()
output = output.transpose(1, 2, 0)
output = np.asarray(np.argmax(output, axis=2), dtype=np.uint8)
output_col = colorize_mask(output)
# output = Image.fromarray(output)
# name = name[0].split('/')[-1]
# output.save('%s/%s' % (save_path, name))
output_col.save('%s/%s_color.png' % (save_path, name.split('.')[0]))
def compute_entropy(pred):
output_sm = F.softmax(pred, dim=1).cpu().data[0].numpy().transpose(1, 2, 0)
output_ent = np.sum(-np.multiply(output_sm, np.log2(output_sm + 1e-30)), axis=2,
keepdims=False)
output_ent = output_ent/np.log2(19)
return output_ent
def entropymap(pred, save_path, name, compute=True, save=True):
if compute == True:
pred = compute_entropy(pred)
# output_sm = F.softmax(pred).cpu().data[0].numpy().transpose(1, 2, 0)
# output_ent = np.sum(-np.multiply(output_sm, np.log2(output_sm)), axis=2,
# keepdims=False)
# output_ent = output_ent/np.log2(19)
if save == True:
fig = plt.figure()
plt.axis('off')
plt.imsave('%s/%s_entropy.png' % (save_path, name.split('.')[0]), pred, cmap=cm.jet)
# hx = sns.heatmap(output_ent, cbar=False, cbar_ax=False, cmap=cm.jet)
# sns_plot = sns.pairplot(hx, hue='species', size=2.5)
# plt.savefig('%s/%s_entropy.png' % (save_path, name.split('.')[0]))
# hx.save('%s/%s_entropy.png' % (save_path, name.split('.')[0]))
# grid_image = make_grid(torch.from_numpy(output_ent), 3, normalize=True,
# range=(0, np.log2(19)))
# plt.imsave(grid_image.permute(1, 2, 0))
def save_confmap(pred, save_path, name):
output_sm = pred.cpu().data[0][0].numpy()
fig = plt.figure()
plt.axis('off')
plt.imsave('%s/%s_conf.png' % (save_path, name.split('.')[0]), output_sm, cmap=cm.jet)
# hx = sns.heatmap(output_ent, cbar=False, cbar_ax=False, cmap=cm.jet)
# sns_plot = sns.pairplot(hx, hue='species', size=2.5)
# plt.savefig('%s/%s_entropy.png' % (save_path, name.split('.')[0]))
# hx.save('%s/%s_entropy.png' % (save_path, name.split('.')[0]))
# grid_image = make_grid(torch.from_numpy(output_ent), 3, normalize=True,
# range=(0, np.log2(19)))
# plt.imsave(grid_image.permute(1, 2, 0))
def prob_2_entropy(prob):
"""
convert probabilistic prediction maps to weighted self-information maps
"""
n, c, h, w = prob.size()
return -torch.mul(prob, torch.log2(prob + 1e-30)) / np.log2(c)
def fast_hist(a, b, n):
k = (a >= 0) & (a < n)
return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n)
def per_class_iu(hist):
return np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
def loss_calc(pred, label, device):
"""
This function returns cross entropy loss for semantic segmentation
"""
# out shape batch_size x channels x h x w -> batch_size x channels x h x w
# label shape h x w x 1 x batch_size -> batch_size x 1 x h x w
label = label.long().to(device)
return cross_entropy_2d(pred, label)
def cross_entropy_2d(predict, target):
"""
Args:
predict:(n, c, h, w)
target:(n, h, w)
"""
assert not target.requires_grad
assert predict.dim() == 4
assert target.dim() == 3
assert predict.size(0) == target.size(0), f"{predict.size(0)} vs {target.size(0)}"
assert predict.size(2) == target.size(1), f"{predict.size(2)} vs {target.size(1)}"
assert predict.size(3) == target.size(2), f"{predict.size(3)} vs {target.size(3)}"
n, c, h, w = predict.size()
target_mask = (target >= 0) * (target != 255)
target = target[target_mask]
if not target.data.dim():
return Variable(torch.zeros(1))
predict = predict.transpose(1, 2).transpose(2, 3).contiguous()
predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c)
loss = F.cross_entropy(predict, target, size_average=True)
return loss
def entropy_loss(v):
"""
Entropy loss for probabilistic prediction vectors
input: batch_size x channels x h x w
output: batch_size x 1 x h x w
"""
assert v.dim() == 4
n, c, h, w = v.size()
return -torch.sum(torch.mul(v, torch.log2(v + 1e-30))) / (n * h * w * np.log2(c))
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter) ** (power))
def adjust_learning_rate(args, optimizer, i_iter):
lr = lr_poly(args.learning_rate, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1:
optimizer.param_groups[1]['lr'] = lr * 10
def similarity(s_fea, prototypes):
conf = [F.cosine_similarity(s_fea, prototype[..., None, None]) for prototype in prototypes]
conf = torch.stack(conf, dim=1)
return conf
def one_hot(index, classes):
size = index.size()[:1] + (classes,)
view = index.size()[:1] + (1,)
mask = torch.Tensor(size).fill_(0).cuda()
index = index.view(view)
ones = 1.
return mask.scatter_(1, index, ones)