-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathTest_cycle.py
236 lines (215 loc) · 10.6 KB
/
Test_cycle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import numpy as np
from tqdm import tqdm
from utils.T_eval import *
from utils.r_eval import compute_R_diff
from utils.utils import make_non_exists_dir
from dataops.dataset import get_dataset_name
from TransSync.p2p_reg import name2estimator
from TransSync.Laplacian_TS import pair2globalT_cycle
class cycle_tester():
def __init__(self, cfg):
self.cfg = cfg
self.datasets = get_dataset_name(self.cfg.dataset, './data')
self.datasetsLo = get_dataset_name('3dLomatch', './data')
self.estimator = name2estimator[args.estimator](self.cfg)
self.prelog_dir = f'{self.cfg.save_dir}/cycle_results/cycle_prelogs'
self.prepose_dir = f'{self.cfg.save_dir}/cycle_results/pcposes'
make_non_exists_dir(self.prelog_dir)
make_non_exists_dir(self.prepose_dir)
self.all_Tscans_topc0 = {}
#for RR
self.tau_2 = self.cfg.tau_2
self.nonconsecutive = True
def savepose(self, dataset, poses):
make_non_exists_dir(f'{self.prepose_dir}/{dataset.name}')
poses = poses.reshape(-1,4)
np.savetxt(f'{self.prepose_dir}/{dataset.name}/pose.txt', poses, delimiter=',')
def savelog(self, dataset, trans):
make_non_exists_dir(f'{self.prelog_dir}/{dataset.name}')
writer=open(f'{self.prelog_dir}/{dataset.name}/pre.log','w')
pair_num=int(len(dataset.pc_ids))
for i, pair in enumerate(dataset.pair_ids):
pc0,pc1=pair
transform_pr=trans[i]
writer.write(f'{int(pc0)}\t{int(pc1)}\t{pair_num}\n')
writer.write(f'{transform_pr[0][0]}\t{transform_pr[0][1]}\t{transform_pr[0][2]}\t{transform_pr[0][3]}\n')
writer.write(f'{transform_pr[1][0]}\t{transform_pr[1][1]}\t{transform_pr[1][2]}\t{transform_pr[1][3]}\n')
writer.write(f'{transform_pr[2][0]}\t{transform_pr[2][1]}\t{transform_pr[2][2]}\t{transform_pr[2][3]}\n')
writer.write(f'{0.0}\t{0.0}\t{0.0}\t{1.0}\n')
writer.close()
def official_RR(self,dataset):
if not self.cfg.rr: return -1.0
gt_dir_loc=str.rfind(dataset.gt_dir,'.')
gt_dir=dataset.gt_dir[0:gt_dir_loc]
gt_pairs, gt_traj = read_trajectory(f'{gt_dir}.log')
n_fragments, gt_traj_cov = read_trajectory_info(f'{gt_dir}.info')
pre_dir = f'{self.prelog_dir}/{dataset.name}'
est_pairs, est_traj = read_pre_trajectory(os.path.join(pre_dir,'pre.log'))
temp_precision, temp_recall,c_flag,c_error = evaluate_registration(n_fragments, est_traj, est_pairs, gt_pairs, gt_traj, gt_traj_cov,err2=self.tau_2,nonconsecutive=self.nonconsecutive)
return temp_recall
def ecdf(self, dataset,
r_splits = [3,5,10,30,45],
t_splits = [0.05,0.1,0.25,0.5,0.75]):
if not self.cfg.ecdf: return np.array([-1.0]),-0.1,-0.1,np.array([-0.1]),-0.1,-0.1
n_good = 0
pre_dir = f'{self.prelog_dir}/{dataset.name}'
est_pairs, est_traj = read_pre_trajectory(os.path.join(pre_dir,'pre.log'))
Rdiffs, tdiffs = [], []
for i,pair in enumerate(est_pairs):
id0,id1,_=pair
gt = dataset.get_transform(id0,id1)
est = est_traj[i]
n_good+=1
Rdiff = compute_R_diff(gt[0:3,0:3], est[0:3,0:3])
tdiff = np.sqrt(np.sum(np.square(gt[0:3,-1]-est[0:3,-1]))+1e-8)
Rdiffs.append(Rdiff)
tdiffs.append(tdiff)
Rdiffs = np.array(Rdiffs)
tdiffs = np.array(tdiffs)
# rotations
ecdf_r = [np.mean(Rdiffs<rthes) for rthes in r_splits]
mean_r = np.mean(Rdiffs)
med_r = np.median(Rdiffs)
# translations
ecdf_t = [np.mean(tdiffs<tthes) for tthes in t_splits]
mean_t = np.mean(tdiffs)
med_t = np.median(tdiffs)
return np.array(ecdf_r), mean_r, med_r, np.array(ecdf_t), mean_t, med_t
def construct_LSW(self, dataset):
# use predicted overlap ratio
scoremat = np.load(f'{self.cfg.save_dir}/predict_overlap/{dataset.name}/ratio.npy')
n,_ = scoremat.shape
# keep symmetry
for i in range(n):
scoremat[i,i] = 0
for j in range(i+1,n):
scoremat[j,i] = scoremat[i,j]
# conduct top-k mask
mask = np.zeros([n,n])
for i in range(n):
score_scan = scoremat[i]
argsort = np.argsort(-score_scan)[:args.topk]
mask[i,argsort] = 1
return scoremat, mask.astype(np.float32)
def onegraph(self, dataset):
scoremat, mask = self.construct_LSW(dataset)
# whether we use the ground truth overlap matrix
# pairwise registration
n = len(dataset.pc_ids)
Ts = np.zeros([n,n,4,4])
irs = np.zeros([n,n])
weights = np.zeros([n,n])
N_pair = 0
for i in range(n):
for j in range(n):
if mask[i,j]>0:
if i == j:continue
# in the following, we must construct a symmetric matrix (weights(if add the noise matrix should also be), Ts)
# for the spectral relaxation solution of rotation synchronization
weights[i,j] = 1
weights[j,i] = 1
# If we haven't load the trans and the inv trans, we load the pairwise transformation
if np.sum(np.abs(Ts[i,j,0:3,0:3]))<0.001:
Tij, ir, n_matches = self.estimator.run(dataset, i, j)
# guarantee meaningful rotation matrix
if np.linalg.det(Tij[0:3,0:3])<0:
Tij[0:2] = Tij[[1,0]]
# we use ransac's inlier number/100
irs[i,j], irs[j,i] = ir*n_matches/100, ir*n_matches/100
Ts[i,j] = Tij
Ts[j,i] = np.linalg.inv(Tij)
N_pair += 1
print(f'Estimate {N_pair} pairs')
# conduct the global transformation syn
Tglobals,weights_out = pair2globalT_cycle(weights*scoremat*irs, Ts, args.N_cyclegraph)
# save the predicted absolute poses
self.savepose(dataset, Tglobals)
return N_pair, Tglobals, ir
def dataseteval(self,dataset,Tpres):
Tpairs = []
for pair in dataset.pair_ids:
id0,id1 = pair
id0,id1 = int(id0), int(id1)
T0 = Tpres[id0]
T1 = Tpres[id1]
T = np.linalg.inv(T0)@T1
Tpairs.append(T[None,:,:])
Tpairs = np.concatenate(Tpairs, axis = 0)
self.savelog(dataset, Tpairs)
return Tpairs
def run_onedatasets(self, datasets):
Total_N_pair = 0
RR = []
IRs = []
ecdf_rs, mean_rs, med_rs, ecdf_ts, mean_ts, med_ts=[],[],[],[],[],[]
setname = datasets['wholesetname']
for name, dataset in tqdm(self.datasets.items()):
if type(dataset) is str: continue
# graph construct and calculate
N_pair, Tpcs, ir = self.onegraph(dataset)
IRs.append(ir)
Total_N_pair += N_pair
self.all_Tscans_topc0[name] = Tpcs
# pairtrans cal and save log
_ = self.dataseteval(datasets[name], Tpcs)
# official RR calculation
rr_one = self.official_RR(datasets[name])
ecdf_r, mean_r, med_r, ecdf_t, mean_t, med_t = self.ecdf(datasets[name])
RR.append(rr_one)
ecdf_rs.append(ecdf_r[None])
mean_rs.append(mean_r)
med_rs.append(med_r)
ecdf_ts.append(ecdf_t[None])
mean_ts.append(mean_t)
med_ts.append(med_t)
if self.cfg.rr:
print(f'{datasets[name].name} rr: {rr_one}')
if self.cfg.ecdf:
print(f'{datasets[name].name} ecdf_r:{ecdf_r}, ecdf_t:{ecdf_t}')
print(f'Conduct {Total_N_pair} pairwise registrations in total.')
print('IR of the selected pairwise transformations:',np.mean(np.array(IRs)))
if self.cfg.rr:
print(f'RR of {setname} - Avg: ', np.mean(np.array(RR)))
if self.cfg.ecdf:
ecdf_rs = np.concatenate(ecdf_rs, axis=0)
ecdf_ts = np.concatenate(ecdf_ts, axis=0)
ecdf_rs = np.mean(ecdf_rs, axis = 0)
ecdf_ts = np.mean(ecdf_ts, axis = 0)
print(f'ECDF_R of {setname} - Statistic: ', ecdf_rs)
print(f'ECDF_R of {setname} - Mean/Med: ', np.mean(np.array(mean_rs)),'/',np.mean(np.array(med_rs)))
print(f'ECDF_T of {setname} - Statistic: ', ecdf_ts)
print(f'ECDF_T of {setname} - Mean/Med: ', np.mean(np.array(mean_ts)),'/',np.mean(np.array(med_ts)))
def run_onedatasets_givengraph(self, datasets):
RR = []
setname = datasets['wholesetname']
for name, dataset in tqdm(self.datasets.items()):
if type(dataset) is str: continue
# pairtrans cal and save log
_ = self.dataseteval(datasets[name], self.all_Tscans_topc0[name])
# official RR calculation
rr_one = self.official_RR(datasets[name])
RR.append(rr_one)
print(f'{datasets[name].name} rr: {rr_one}')
print(f'RR of {setname} - Avg: ', np.mean(np.array(RR)))
def run(self):
self.run_onedatasets(self.datasets)
if self.datasets['wholesetname'] == '3dmatch':
self.run_onedatasets_givengraph(self.datasetsLo)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='3dmatch', type=str, help='name of dataset')
# for multireg algorithm
parser.add_argument('--estimator', default='yoho', type=str, help='name of estimator')
parser.add_argument('--topk', default=10, type=int, help='the top k overlapping scans used for transformation syn')
parser.add_argument('--N_cyclegraph', default=50, type=int, help='we WLS the graph for 100 iterations')
# for evaluation
parser.add_argument('--save_dir', default='./pre', type=str, help='for eval results')
parser.add_argument('--inlierd', default=0.07, type=float, help='inlier threshold for RANSAC')
parser.add_argument('--rr', action='store_true')
parser.add_argument('--tr', action='store_true')
parser.add_argument('--ecdf', action='store_true')
parser.add_argument('--tau_2', default=0.2, type=float, help='Thres for RR')
args = parser.parse_args()
tester = cycle_tester(args)
tester.run()