什么是大模型?大模型模型参数量实在太大,需要分布式并行训练能力一起来加速训练过程。分布式并行是在大规模AI集群上工作的,想要加速就需要软硬件协同,不仅仅要解决通信拓扑的问题、集群组网的问题,还要了解上层MOE、Transform等新兴算法。通过对算法的剖析,提出模型并行、数据并行、优化器并行等新的并行模式和通信同步模式,来加速分布式训练的过程。最小的单机执行单元里面,还要针对大模型进行混合精度、梯度累积等算法,进一步压榨集群的算力!
希望这个系列能够给大家、朋友们带来一些些帮助,也希望自己能够继续坚持完成所有内容哈!
内容大纲
PPT
和字幕
需要到 Github 下载,网页课程版链接会失效哦~建议优先下载 PDF 版本,PPT 版本会因为字体缺失等原因导致版本很丑哦~
大纲 | 小节 | 链接 |
---|---|---|
分布式集群 | 01 基本介绍 | PPT, 视频 |
分布式集群 | 02 AI集群服务器架构 | PPT, 视频 |
分布式集群 | 03 AI集群软硬件通信 | PPT, 视频 |
分布式集群 | 04 集合通信原语 | PPT, 视频 |
分布式算法 | 05 AI框架分布式功能 | PPT, 视频 |
文字课程内容正在一节节补充更新,每晚会抽空继续更新正在 AISys ,希望您多多鼓励和参与进来!!!
文字课程开源在 AISys,系列视频托管B站和油管,PPT开源在github,欢迎取用!!!
非常希望您也参与到这个开源项目中,B站给ZOMI留言哦!
欢迎大家使用的过程中发现bug或者勘误直接提交代码PR到开源社区哦!
希望这个系列能够给大家、朋友们带来一些些帮助,也希望自己能够继续坚持完成所有内容哈!