Skip to content

Latest commit

 

History

History
181 lines (147 loc) · 4.84 KB

apt-get-install_user_manual.md

File metadata and controls

181 lines (147 loc) · 4.84 KB

apt-get 安装和使用Tengine

功能说明

基于标准的ubuntu系统,Tengine提供了命令行的安装方式,通过apt-get命令,可下载Tengine库,并且同步提供相应的预置Demo,欢迎大家试用。

以下所有命令均在设备的命令行运行

硬件 系统
x86 ubuntu18.04
A311D ubuntu18.04

1. 客户端配置APT源

X86配置源命令:

echo deb [trusted=yes] http://58.33.201.109:8099/x86/ focal main | sudo tee -a /etc/apt/sources.list

A311D板子配置源命令:

echo deb [trusted=yes] http://58.33.201.109:8099/a311d/ focal main | sudo tee -a /etc/apt/sources.list

2. 更新源

sudo apt-get update

3. 客户端下载tengine

sudo apt-get install tengine

4. 下载的tengine目录结构

X86:

/usr/
├── bin
│   ├── convert_tool
│   ├── quant_tool_uint8
│   ├── tm_classification
│   └── tm_yolov5s
├── include
│   └── tengine
│       ├── c_api.h
│       └── defines.h
├── lib
│   └── libtengine-lite.so
└── share
    ├── cat.jpg
    ├── mobilenet.tmfile
    ├── ssd_dog.jpg
    └── yolov5s.tmfile

A311D:

/usr/
├── bin
│   ├── tm_classification
│   ├── tm_yolov5s
│   └── tm_yolov5s_timvx
├── include
│   └── tengine
│       ├── c_api.h
│       └── defines.h
├── lib
│   └── libtengine-lite.so
└── share
    ├── cat.jpg
    ├── mobilenet.tmfile
    ├── ssd_dog.jpg
    ├── yolov5s.tmfile
    └── yolov5s_uint8.tmfile

5.Demo运行示例

X86平台

分类网络示例

peter@test-server:/usr/bin$ ./tm_classification -m /usr/share/mobilenet.tmfile -i /usr/share/cat.jpg 
Image height not specified, use default 224
Image width not specified, use default  224
Scale value not specified, use default  0.0, 0.0, 0.0
Mean value not specified, use default   104.0, 116.7, 122.7
tengine-lite library version: 1.5-dev

model file : /usr/share/mobilenet.tmfile
image file : /usr/share/cat.jpg
img_h, img_w, scale[3], mean[3] : 224 224 , 0.017 0.017 0.017, 104.0 116.7 122.7
Repeat 1 times, thread 1, avg time 23.36 ms, max_time 23.36 ms, min_time 23.36 ms
--------------------------------------
8.574143, 282
7.880117, 277
7.812573, 278
7.286458, 263
6.357487, 281
--------------------------------------

检测网络示例

peter@test-server:/usr/bin$ ./tm_yolov5s -m /usr/share/yolov5s.tmfile -i /usr/share/ssd_dog.jpg 
tengine-lite library version: 1.5-dev
Repeat 1 times, thread 1, avg time 306.23 ms, max_time 306.23 ms, min_time 306.23 ms
--------------------------------------
detection num: 3
16:  89%, [ 135,  218,  313,  558], dog
 7:  86%, [ 472,   78,  689,  169], truck
 1:  75%, [ 124,  107,  578,  449], bicycle
--------------------------------------

A311D

分类网络示例-cpu

cd /usr/bin/
khadas@Khadas:/usr/bin$ ./tm_classification -m /usr/share/mobilenet.tmfile -i /usr/share/cat.jpg 
Image height not specified, use default 224
Image width not specified, use default  224
Scale value not specified, use default  0.0, 0.0, 0.0
Mean value not specified, use default   104.0, 116.7, 122.7
tengine-lite library version: 1.5-dev

model file : /usr/share/mobilenet.tmfile
image file : /usr/share/cat.jpg
img_h, img_w, scale[3], mean[3] : 224 224 , 0.017 0.017 0.017, 104.0 116.7 122.7
Repeat 1 times, thread 1, avg time 104.37 ms, max_time 104.37 ms, min_time 104.37 ms
--------------------------------------
8.574153, 282
7.880111, 277
7.812575, 278
7.286450, 263
6.357493, 281
--------------------------------------

检测网络示例-CPU

khadas@Khadas:/usr/bin$ ./tm_yolov5s -m /usr/share/yolov5s.tmfile -i /usr/share/ssd_dog.jpg 
tengine-lite library version: 1.5-dev
Repeat 1 times, thread 1, avg time 1369.74 ms, max_time 1369.74 ms, min_time 1369.74 ms
--------------------------------------
detection num: 3
16:  89%, [ 135,  218,  313,  558], dog
 7:  86%, [ 472,   78,  689,  169], truck
 1:  75%, [ 123,  107,  578,  449], bicycle
--------------------------------------

检测网络示例-NPU

khadas@Khadas:/usr/bin$ ./tm_yolov5s_timvx -m /usr/share/yolov5s_uint8.tmfile -i /usr/share/ssd_dog.jpg 
Please make sure Galcore Sdk version > 6.4.4,Please refer to https://github.com/OAID/Tengine/blob/tengine-lite/doc/npu_tim-vx_user_manual_zh.md for more information
tengine-lite library version: 1.5-dev
Repeat 1 times, thread 1, avg time 68.33 ms, max_time 68.33 ms, min_time 68.33 ms
--------------------------------------
detection num: 3
16:  89%, [ 136,  224,  313,  550], dog
 7:  87%, [ 473,   72,  692,  171], truck
 1:  75%, [ 129,  108,  578,  443], bicycle
--------------------------------------