forked from OAID/Tengine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcpp_tm_mobilenet_ssd.cpp
221 lines (188 loc) · 6.16 KB
/
cpp_tm_mobilenet_ssd.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2020, OPEN AI LAB
* Author: [email protected]
*/
#include <cstdlib>
#include <cstdio>
#include <string>
#include <iostream>
#include <vector>
#ifdef _MSC_VER
#define NOMINMAX
#endif
#include <algorithm>
#include "common.h"
#include "tengine_cpp_api.h"
#include "tengine_operations.h"
#define DEFAULT_REPEAT_COUNT 1
#define DEFAULT_THREAD_COUNT 1
using namespace std;
typedef struct Box
{
int x0;
int y0;
int x1;
int y1;
int class_idx;
float score;
} Box_t;
void post_process_ssd(const string image_file, float threshold, const float* outdata, int num)
{
const char* class_names[] = {"background", "aeroplane", "bicycle", "bird", "boat", "bottle",
"bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"};
image im = imread(image_file.c_str());
int raw_h = im.h;
int raw_w = im.w;
// struct vector* boxes = create_vector(sizeof(Box_t), nullptr);
std::vector<Box_t> boxes;
fprintf(stderr, "detect result num: %d \n", num);
for (int i = 0; i < num; i++)
{
if (outdata[1] >= threshold)
{
Box_t box;
box.class_idx = (int)outdata[0];
box.score = outdata[1];
box.x0 = outdata[2] * raw_w;
box.y0 = outdata[3] * raw_h;
box.x1 = outdata[4] * raw_w;
box.y1 = outdata[5] * raw_h;
boxes.push_back(box);
fprintf(stderr, "%s\t:%.1f%%\n", class_names[box.class_idx], box.score * 100);
fprintf(stderr, "BOX:( %d , %d ),( %d , %d )\n", box.x0, box.y0, box.x1, box.y1);
}
outdata += 6;
}
for (int i = 0; i < boxes.size(); i++)
{
Box_t box = boxes[i];
draw_box(im, box.x0, box.y0, box.x1, box.y1, 2, 125, 0, 125);
}
save_image(im, "mobilenet_ssd_out");
free_image(im);
fprintf(stderr, "======================================\n");
fprintf(stderr, "[DETECTED IMAGE SAVED]:\n");
fprintf(stderr, "======================================\n");
}
void show_usage()
{
fprintf(stderr, "[Usage]: [-h]\n [-m model_file] [-i image_file] [-r repeat_count] [-t thread_count]\n");
}
int main(int argc, char* argv[])
{
int repeat_count = DEFAULT_REPEAT_COUNT;
int num_thread = DEFAULT_THREAD_COUNT;
string model_file;
string image_file;
int img_h = 300;
int img_w = 300;
float mean[3] = {127.5f, 127.5f, 127.5f};
float scale[3] = {0.007843f, 0.007843f, 0.007843f};
float show_threshold = 0.5f;
int res;
while ((res = getopt(argc, argv, "m:i:r:t:h:")) != -1)
{
switch (res)
{
case 'm':
model_file = optarg;
break;
case 'i':
image_file = optarg;
break;
case 'r':
repeat_count = atoi(optarg);
break;
case 't':
num_thread = atoi(optarg);
break;
case 'h':
show_usage();
return 0;
default:
break;
}
}
/* check files */
if (model_file.empty())
{
std::cerr << "Error: Tengine model file not specified!" << std::endl;
show_usage();
return -1;
}
if (image_file.empty())
{
std::cerr << "Error: Image file not specified!" << std::endl;
show_usage();
return -1;
}
if (!check_file_exist(model_file.c_str()) || !check_file_exist(image_file.c_str()))
return -1;
/* inital tengine */
if (init_tengine() != 0)
{
fprintf(stderr, "Initial tengine failed.\n");
return -1;
}
fprintf(stderr, "tengine-lite library version: %s\n", get_tengine_version());
/* net inference */
{
tengine::Net somenet;
tengine::Tensor input_tensor;
tengine::Tensor output_tensor;
/* set runtime options of Net */
somenet.opt.num_thread = num_thread;
somenet.opt.cluster = TENGINE_CLUSTER_ALL;
somenet.opt.precision = TENGINE_MODE_FP32;
/* load model */
somenet.load_model(nullptr, "tengine", model_file.c_str());
/* prepare input data */
input_tensor.create(1, 3, img_h, img_w);
get_input_data(image_file.c_str(), (float*)input_tensor.data, img_h, img_w, mean, scale);
/* forward */
somenet.input_tensor("data", input_tensor);
double min_time, max_time, total_time;
min_time = DBL_MAX;
max_time = DBL_MIN;
total_time = 0;
for (int i = 0; i < repeat_count; i++)
{
double start_time = get_current_time();
somenet.run();
double end_time = get_current_time();
double cur_time = end_time - start_time;
total_time += cur_time;
max_time = std::max(max_time, cur_time);
min_time = std::min(min_time, cur_time);
}
printf("Repeat [%d] min %.3f ms, max %.3f ms, avg %.3f ms\n", repeat_count, min_time, max_time,
total_time / repeat_count);
/* get result */
somenet.extract_tensor("detection_out", output_tensor);
/* SSD process */
post_process_ssd(image_file, show_threshold, (float*)output_tensor.data, output_tensor.h);
}
/* release */
release_tengine();
return 0;
}