forked from OAID/Tengine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtm_apollo_smoke.cpp
527 lines (465 loc) · 16.9 KB
/
tm_apollo_smoke.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2021, OPEN AI LAB
* Author: [email protected]
*/
#include <stdlib.h>
#include <stdio.h>
#include "common.h"
#include "tengine/c_api.h"
#include "tengine_operations.h"
#include <vector>
#include <algorithm>
#include <opencv2/core/mat.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#define DEFAULT_IMG_H 640
#define DEFAULT_IMG_W 960
#define DEFAULT_LOOP_COUNT 1
#define DEFAULT_THREAD_COUNT 4
#define DEFAULT_CPU_AFFINITY 0
#define MAX_DETECTION 50
#define PI 3.14159265
#define NEG_PI -3.14159265
// l h w
float pre_know_object_mean_dims[][3] = {{3.88000011, 1.63000000, 1.52999997},
{1.77999997, 1.70000005, 0.57999998},
{0.88000000, 1.73000002, 0.67000002}};
float camera_k_waymo[][3] = {{2.05556e+03, 0.00000e+00, 9.39658e+02},
{0.00000e+00, 2.05556e+03, 6.41072e+02},
{0.00000e+00, 0.00000e+00, 1.00000e+00}};
float camera_k_inv_waymo[][3] = {{0.00048649, 0., -0.45712993},
{0., 0.00048649, -0.31187218},
{0., 0., 1.}};
float box_3d_corner_map[8][3] = {
{-0.5, -1, -0.5},
{0.5, -1, -0.5},
{0.5, 0, -0.5},
{0.5, 0, 0.5},
{0.5, -1, 0.5},
{-0.5, -1, 0.5},
{-0.5, 0, 0.5},
{-0.5, 0, -0.5}};
int face_idx[][4] = {{5, 4, 3, 6}, {1, 2, 3, 4}, {1, 0, 7, 2}, {0, 5, 6, 7}};
struct box_3d_object
{
float coo[8][2];
int clas;
};
struct hm_process_object
{
int pos;
float score;
int clas;
float xs, ys;
};
struct reg_process_object
{
float val[10];
};
struct post_process_object
{
float score;
int clas;
float depth;
float x, y, z;
float dim0, dim1, dim2;
float alpha_x, yaw;
float x0, y0, x1, y1;
};
void process_hm_message(std::vector<hm_process_object>& hm_process_objects,
int c,
int h,
int w,
const float* hm_max_data,
const float* hm_data)
{
for (int i = 0; i < c; ++i)
{
for (int j = 0; j < h * w; ++j)
{
if (hm_max_data[i * h * w + j] == hm_data[i * h * w + j])
{
hm_process_object object{};
object.pos = j;
object.score = hm_max_data[i * h * w + j];
object.clas = i;
object.xs = j % w;
object.ys = j / w;
hm_process_objects.push_back(object);
}
}
}
std::sort(hm_process_objects.begin(),
hm_process_objects.end(),
[](const hm_process_object& a, const hm_process_object& b) {
return a.score > b.score;
});
}
void get_reg_data_object(const std::vector<hm_process_object>& hm_process_objects,
std::vector<reg_process_object>& reg_process_objects,
int h,
int w,
const float* reg_data)
{
for (int i = 0; i < MAX_DETECTION; ++i)
{
reg_process_object object{};
for (int j = 0; j < 10; ++j)
{
int index = j * h * w + hm_process_objects[i].pos;
object.val[j] = reg_data[index];
}
reg_process_objects.push_back(object);
}
}
void post_process(const std::vector<hm_process_object>& hm_process_objects,
const std::vector<reg_process_object>& reg_process_objects,
std::vector<post_process_object>& post_process_objects)
{
for (int i = 0; i < MAX_DETECTION; ++i)
{
hm_process_object hm_object = hm_process_objects[i];
if (hm_object.score < 0.25)
{
continue;
}
post_process_object object{};
reg_process_object reg_object = reg_process_objects[i];
object.score = hm_object.score;
object.clas = hm_object.clas;
object.depth = 16.31999 * reg_object.val[0] + 28.01;
float tmp_x = (hm_object.xs + reg_object.val[1]) * 8;
float tmp_y = (hm_object.ys + reg_object.val[2]) * 8;
tmp_x *= object.depth;
tmp_y *= object.depth;
object.x = camera_k_inv_waymo[0][0] * tmp_x + camera_k_inv_waymo[0][2] * object.depth;
object.y = camera_k_inv_waymo[1][1] * tmp_y + camera_k_inv_waymo[1][2] * object.depth;
object.z = object.depth;
int clas = hm_object.clas;
// l h w
float dim0 = pre_know_object_mean_dims[clas][0] * exp(reg_object.val[3]);
float dim1 = pre_know_object_mean_dims[clas][1] * exp(reg_object.val[4]);
float dim2 = pre_know_object_mean_dims[clas][2] * exp(reg_object.val[5]);
object.y += dim1 / 2;
object.dim0 = dim0;
object.dim1 = dim1;
object.dim2 = dim2;
double ray = atan(object.x / (object.z + 1e-7));
double alpha = atan(reg_object.val[6] / (reg_object.val[7] + 1e-7));
if (reg_object.val[7] >= 0)
{
alpha = alpha - PI / 2;
}
else
{
alpha = alpha + PI / 2;
}
double yaw = alpha + ray;
if (yaw > PI)
{
yaw -= 2 * PI;
}
else if (yaw < NEG_PI)
{
yaw += 2 * PI;
}
object.alpha_x = alpha;
object.yaw = yaw;
float x0 = hm_object.xs - reg_object.val[8] / 2;
float y0 = hm_object.ys - reg_object.val[9] / 2;
float x1 = hm_object.xs + reg_object.val[8] / 2;
float y1 = hm_object.ys + reg_object.val[9] / 2;
object.x0 = x0 * 8;
object.y0 = y0 * 8;
object.x1 = x1 * 8;
object.y1 = y1 * 8;
post_process_objects.push_back(object);
}
}
void box_3d_process(const std::vector<post_process_object>& post_process_objects,
std::vector<box_3d_object>& box_3d_objects)
{
for (int i = 0; i < post_process_objects.size(); ++i)
{
box_3d_object object{};
// 8 points
for (int j = 0; j < 8; ++j)
{
float tmp_x = box_3d_corner_map[j][0] * post_process_objects[i].dim0;
float tmp_y = box_3d_corner_map[j][1] * post_process_objects[i].dim1;
float tmp_z = box_3d_corner_map[j][2] * post_process_objects[i].dim2;
float cos_value = cos(post_process_objects[i].yaw);
float sin_value = sin(post_process_objects[i].yaw);
float rotate_x = tmp_x * cos_value + tmp_z * sin_value + post_process_objects[i].x;
float rotate_y = tmp_y + post_process_objects[i].y;
float rotate_z = tmp_z * cos_value - tmp_x * sin_value + post_process_objects[i].z;
float box3d_x = rotate_x * camera_k_waymo[0][0] + rotate_z * camera_k_waymo[0][2];
float box3d_y = rotate_y * camera_k_waymo[1][1] + rotate_z * camera_k_waymo[1][2];
float box3d_z = rotate_z;
object.coo[j][0] = box3d_x / box3d_z;
object.coo[j][1] = box3d_y / box3d_z;
}
box_3d_objects.push_back(object);
}
}
void draw_box_3d_object(const char* image_file, const std::vector<box_3d_object> box_3d_objects)
{
cv::Mat input = cv::imread(image_file);
cv::Mat input_poly = input.clone();
for (int i = 0; i < box_3d_objects.size(); ++i)
{
box_3d_object object = box_3d_objects[i];
for (int j = 3; j >= 0; j--)
{
for (int k = 0; k < 4; ++k)
{
cv::line(input, cv::Point(object.coo[face_idx[j][k]][0], object.coo[face_idx[j][k]][1]),
cv::Point(object.coo[face_idx[j][(k + 1) % 4]][0], object.coo[face_idx[j][(k + 1) % 4]][1]),
cv::Scalar(0, 255, 0), 1, cv::LineTypes::LINE_AA);
}
if (j == 0)
{
// cv::Point poly_points[0][4]; // dimension can not be 0
cv::Point poly_points[1][4];
poly_points[0][0] = cv::Point(object.coo[face_idx[0][0]][0], object.coo[face_idx[0][0]][1]);
poly_points[0][1] = cv::Point(object.coo[face_idx[0][1]][0], object.coo[face_idx[0][1]][1]);
poly_points[0][2] = cv::Point(object.coo[face_idx[0][2]][0], object.coo[face_idx[0][2]][1]);
poly_points[0][3] = cv::Point(object.coo[face_idx[0][3]][0], object.coo[face_idx[0][3]][1]);
int npt[] = {4};
const cv::Point* ppt[1] = {poly_points[0]};
cv::fillPoly(input_poly, ppt, npt, 1, cv::Scalar(0, 0, 255));
}
}
}
cv::addWeighted(input, 0.8, input_poly, 0.2, 10, input);
cv::imwrite("tengine_apollo_smoke_res.png", input);
}
void get_smoke_input_data(float* input_data, const char* image_file, const float* means, const float* scale)
{
cv::Mat input = cv::imread(image_file);
cv::resize(input, input, cv::Size(DEFAULT_IMG_W, DEFAULT_IMG_H), cv::INTER_LINEAR);
for (int h = 0; h < DEFAULT_IMG_H; h++)
{
for (int w = 0; w < DEFAULT_IMG_W; w++)
{
for (int c = 0; c < 3; c++)
{
int in_index = h * DEFAULT_IMG_W * 3 + w * 3 + c;
int out_index = c * DEFAULT_IMG_W * DEFAULT_IMG_H + h * DEFAULT_IMG_W + w;
float tmp = ((float)input.data[in_index] / 255.f - means[c]) * scale[c];
input_data[out_index] = tmp;
}
}
}
}
int tengine_apollo_smoke(const char* model_file,
const char* image_file,
int img_h,
int img_w,
int loop_count,
int num_thread,
int affinity)
{
/* set runtime options */
struct options opt;
opt.num_thread = num_thread;
opt.cluster = TENGINE_CLUSTER_ALL;
opt.precision = TENGINE_MODE_FP32;
opt.affinity = affinity;
/* inital tengine */
if (init_tengine() != 0)
{
fprintf(stderr, "Initial tengine failed.\n");
return -1;
}
fprintf(stderr, "tengine-lite library version: %s\n", get_tengine_version());
/* create graph, load tengine model xxx.tmfile */
graph_t graph = create_graph(nullptr, "tengine", model_file);
if (nullptr == graph)
{
fprintf(stderr, "Create graph failed.\n");
return -1;
}
/* set the shape, data buffer of input_tensor of the graph */
int img_size = img_h * img_w * 3;
int dims[] = {1, 3, img_h, img_w}; // nchw
auto* input_data = (float*)malloc(img_size * sizeof(float));
float means[3] = {0.485, 0.456, 0.406};
float scales[3] = {1 / 0.229, 1 / 0.224, 1 / 0.225};
get_smoke_input_data(input_data, image_file, means, scales);
tensor_t input_tensor = get_graph_input_tensor(graph, 0, 0);
if (input_tensor == nullptr)
{
fprintf(stderr, "Get input tensor failed\n");
return -1;
}
if (set_tensor_shape(input_tensor, dims, 4) < 0)
{
fprintf(stderr, "Set input tensor shape failed\n");
return -1;
}
if (set_tensor_buffer(input_tensor, input_data, img_size * sizeof(float)) < 0)
{
fprintf(stderr, "Set input tensor buffer failed\n");
return -1;
}
/* prerun graph, set work options(num_thread, cluster, precision) */
if (prerun_graph_multithread(graph, opt) < 0)
{
fprintf(stderr, "Prerun multithread graph failed.\n");
return -1;
}
/* run graph */
double min_time = DBL_MAX;
double max_time = DBL_MIN;
double total_time = 0.;
for (int i = 0; i < loop_count; i++)
{
double start = get_current_time();
if (run_graph(graph, 1) < 0)
{
fprintf(stderr, "Run graph failed\n");
return -1;
}
double end = get_current_time();
double cur = end - start;
total_time += cur;
if (min_time > cur)
min_time = cur;
if (max_time < cur)
max_time = cur;
}
fprintf(stderr, "\nmodel file : %s\n", model_file);
fprintf(stderr, "image file : %s\n", image_file);
fprintf(stderr, "img_h, img_w, scale[3], mean[3] : %d %d , %.3f %.3f %.3f, %.1f %.1f %.1f\n", img_h, img_w,
scales[0], scales[1], scales[2], means[0], means[1], means[2]);
fprintf(stderr, "Repeat %d times, thread %d, avg time %.2f ms, max_time %.2f ms, min_time %.2f ms\n", loop_count,
num_thread, total_time / loop_count, max_time, min_time);
fprintf(stderr, "--------------------------------------\n");
tensor_t hm_tensor = get_graph_output_tensor(graph, 0, 0);
tensor_t reg_tensor = get_graph_output_tensor(graph, 1, 0);
tensor_t hm_max_tensor = get_graph_output_tensor(graph, 2, 0);
auto* hm_data = (float*)get_tensor_buffer(hm_tensor);
auto* reg_data = (float*)get_tensor_buffer(reg_tensor);
auto* hm_max_data = (float*)get_tensor_buffer(hm_max_tensor);
int hm_dim[4];
get_tensor_shape(hm_tensor, hm_dim, 4);
int c = hm_dim[1], h = hm_dim[2], w = hm_dim[3];
// 1. process hm message get object score and position
std::vector<hm_process_object> hm_process_objects;
process_hm_message(hm_process_objects, c, h, w, hm_max_data, hm_data);
// 2. get regression data by hm position
std::vector<reg_process_object> reg_process_objects;
get_reg_data_object(hm_process_objects, reg_process_objects, h, w, reg_data);
// 3. post process regression data
std::vector<post_process_object> post_process_objects;
post_process(hm_process_objects, reg_process_objects, post_process_objects);
// 4. get object 8 corner points
std::vector<box_3d_object> box_3d_objects;
box_3d_process(post_process_objects, box_3d_objects);
draw_box_3d_object(image_file, box_3d_objects);
/* release tengine */
free(input_data);
postrun_graph(graph);
destroy_graph(graph);
release_tengine();
return 0;
}
void show_usage()
{
fprintf(
stderr,
"[Usage]: [-h]\n [-m model_file] [-i image_file]\n [-g img_h,img_w] [-s scale[0],scale[1],scale[2]] [-w "
"mean[0],mean[1],mean[2]] [-r loop_count] [-t thread_count] [-a cpu_affinity]\n");
fprintf(
stderr,
"\nmobilenet example: \n ./classification -m /path/to/mobilenet.tmfile -i /path/to/img.jpg -g 224,224 -s "
"0.017,0.017,0.017 -w 104.007,116.669,122.679\n");
}
int main(int argc, char* argv[])
{
int loop_count = DEFAULT_LOOP_COUNT;
int num_thread = DEFAULT_THREAD_COUNT;
int cpu_affinity = DEFAULT_CPU_AFFINITY;
char* model_file = NULL;
char* image_file = NULL;
float img_hw[2] = {0.f};
int img_h = 0;
int img_w = 0;
int res;
while ((res = getopt(argc, argv, "m:i:l:g:s:w:r:t:a:h")) != -1)
{
switch (res)
{
case 'm':
model_file = optarg;
break;
case 'i':
image_file = optarg;
break;
case 'g':
split(img_hw, optarg, ",");
img_h = (int)img_hw[0];
img_w = (int)img_hw[1];
break;
case 'r':
loop_count = atoi(optarg);
break;
case 't':
num_thread = atoi(optarg);
break;
case 'a':
cpu_affinity = atoi(optarg);
break;
case 'h':
show_usage();
return 0;
default: break;
}
}
/* check files */
if (model_file == nullptr)
{
fprintf(stderr, "Error: Tengine model file not specified!\n");
show_usage();
return -1;
}
if (image_file == nullptr)
{
fprintf(stderr, "Error: image file not specified!\n");
show_usage();
}
if (!check_file_exist(model_file) || !check_file_exist(image_file))
return -1;
if (img_h == 0)
{
img_h = DEFAULT_IMG_H;
fprintf(stderr, "Image height not specified, use default %d\n", img_h);
}
if (img_w == 0)
{
img_w = DEFAULT_IMG_W;
fprintf(stderr, "Image width not specified, use default %d\n", img_w);
}
if (tengine_apollo_smoke(model_file, image_file, img_h, img_w, loop_count, num_thread, cpu_affinity) < 0)
return -1;
return 0;
}