forked from OAID/Tengine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtm_ultraface.cpp
400 lines (344 loc) · 12.1 KB
/
tm_ultraface.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2020, OPEN AI LAB
* Author: [email protected]
*
* original model: https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
*/
#include <vector>
#include <algorithm>
#include "common.h"
#include "tengine/c_api.h"
#include "tengine_operations.h"
#define DEFAULT_REPEAT_COUNT 1
#define DEFAULT_THREAD_COUNT 1
#define num_featuremap 4
#define hard_nms 1
#define blending_nms 2 /* mix nms was been proposaled in paper blaze face, aims to minimize the temporal jitter*/
#define clip(x, y) (x < 0 ? 0 : (x > y ? y : x))
typedef struct FaceInfo
{
float x1;
float y1;
float x2;
float y2;
float score;
} FaceInfo;
//input image size
const int g_tensor_in_w = 320;
const int g_tensor_in_h = 240;
const float g_score_threshold = 0.7f;
const float g_iou_threshold = 0.3f;
const float g_center_variance = 0.1f;
const float g_size_variance = 0.2f;
static void nms(std::vector<FaceInfo>& input, std::vector<FaceInfo>& output, int type = blending_nms)
{
std::sort(input.begin(), input.end(), [](const FaceInfo& a, const FaceInfo& b) { return a.score > b.score; });
int box_num = input.size();
std::vector<int> merged(box_num, 0);
for (int i = 0; i < box_num; i++)
{
if (merged[i])
continue;
std::vector<FaceInfo> buf;
buf.push_back(input[i]);
merged[i] = 1;
float h0 = input[i].y2 - input[i].y1 + 1;
float w0 = input[i].x2 - input[i].x1 + 1;
float area0 = h0 * w0;
for (int j = i + 1; j < box_num; j++)
{
if (merged[j])
continue;
float inner_x0 = input[i].x1 > input[j].x1 ? input[i].x1 : input[j].x1;
float inner_y0 = input[i].y1 > input[j].y1 ? input[i].y1 : input[j].y1;
float inner_x1 = input[i].x2 < input[j].x2 ? input[i].x2 : input[j].x2;
float inner_y1 = input[i].y2 < input[j].y2 ? input[i].y2 : input[j].y2;
float inner_h = inner_y1 - inner_y0 + 1;
float inner_w = inner_x1 - inner_x0 + 1;
if (inner_h <= 0 || inner_w <= 0)
continue;
float inner_area = inner_h * inner_w;
float h1 = input[j].y2 - input[j].y1 + 1;
float w1 = input[j].x2 - input[j].x1 + 1;
float area1 = h1 * w1;
float score;
score = inner_area / (area0 + area1 - inner_area);
if (score > g_iou_threshold)
{
merged[j] = 1;
buf.push_back(input[j]);
}
}
switch (type)
{
case hard_nms:
{
output.push_back(buf[0]);
break;
}
case blending_nms:
{
float total = 0;
for (int i = 0; i < buf.size(); i++)
{
total += exp(buf[i].score);
}
FaceInfo rects;
memset(&rects, 0, sizeof(rects));
for (int i = 0; i < buf.size(); i++)
{
float rate = exp(buf[i].score) / total;
rects.x1 += buf[i].x1 * rate;
rects.y1 += buf[i].y1 * rate;
rects.x2 += buf[i].x2 * rate;
rects.y2 += buf[i].y2 * rate;
rects.score += buf[i].score * rate;
}
output.push_back(rects);
break;
}
default:
{
fprintf(stderr, "wrong type of nms.");
exit(-1);
}
}
}
}
static void post_process_ultraface(const char* image_file, float* boxs_data, float* scores_data)
{
image im = imread(image_file);
int image_h = im.h;
int image_w = im.w;
const std::vector<std::vector<float> > min_boxes = {
{10.0f, 16.0f, 24.0f}, {32.0f, 48.0f}, {64.0f, 96.0f}, {128.0f, 192.0f, 256.0f}};
std::vector<std::vector<float> > shrinkage_size;
std::vector<std::vector<float> > priors = {};
std::vector<std::vector<float> > featuremap_size;
const std::vector<float> strides = {8.0, 16.0, 32.0, 64.0};
std::vector<int> w_h_list = {g_tensor_in_w, g_tensor_in_h};
for (auto size : w_h_list)
{
std::vector<float> fm_item;
for (float stride : strides)
{
fm_item.push_back(ceil(size / stride));
}
featuremap_size.push_back(fm_item);
}
for (auto size : w_h_list)
{
shrinkage_size.push_back(strides);
}
/* generate prior anchors */
for (int index = 0; index < num_featuremap; index++)
{
float scale_w = g_tensor_in_w / shrinkage_size[0][index];
float scale_h = g_tensor_in_h / shrinkage_size[1][index];
for (int j = 0; j < featuremap_size[1][index]; j++)
{
for (int i = 0; i < featuremap_size[0][index]; i++)
{
float x_center = (i + 0.5) / scale_w;
float y_center = (j + 0.5) / scale_h;
for (float k : min_boxes[index])
{
float w = k / g_tensor_in_w;
float h = k / g_tensor_in_h;
priors.push_back({clip(x_center, 1), clip(y_center, 1), clip(w, 1), clip(h, 1)});
}
}
}
}
/* generate prior anchors finished */
std::vector<FaceInfo> bbox_collection;
const int num_anchors = priors.size();
for (int i = 0; i < num_anchors; i++)
{
if (scores_data[i * 2 + 1] > g_score_threshold)
{
FaceInfo rects;
float x_center = boxs_data[i * 4] * g_center_variance * priors[i][2] + priors[i][0];
float y_center = boxs_data[i * 4 + 1] * g_center_variance * priors[i][3] + priors[i][1];
float w = exp(boxs_data[i * 4 + 2] * g_size_variance) * priors[i][2];
float h = exp(boxs_data[i * 4 + 3] * g_size_variance) * priors[i][3];
rects.x1 = clip(x_center - w / 2.0, 1) * image_w;
rects.y1 = clip(y_center - h / 2.0, 1) * image_h;
rects.x2 = clip(x_center + w / 2.0, 1) * image_w;
rects.y2 = clip(y_center + h / 2.0, 1) * image_h;
rects.score = clip(scores_data[i * 2 + 1], 1);
bbox_collection.push_back(rects);
}
}
std::vector<FaceInfo> face_list;
nms(bbox_collection, face_list);
fprintf(stderr, "detected face num: %ld\n", face_list.size());
for (int i = 0; i < face_list.size(); i++)
{
FaceInfo box = face_list[i];
draw_box(im, box.x1, box.y1, box.x2, box.y2, 4, 255, 0, 0);
fprintf(stderr, "BOX %.2f:(%.2f, %.2f),(%.2f, %.2f)\n", box.score, box.x1, box.y1, box.x2, box.y2);
}
save_image(im, "ultraface_out");
free_image(im);
fprintf(stderr, "======================================\n");
fprintf(stderr, "[DETECTED IMAGE SAVED]:\n");
fprintf(stderr, "======================================\n");
}
void show_usage()
{
fprintf(stderr, "[Usage]: [-h]\n [-m model_file] [-i image_file] [-r repeat_count] [-t thread_count]\n\
[example]: tm_ultraface -m version-RFB-320_simplified.tmfile -i 1.jpg\n");
}
int main(int argc, char* argv[])
{
int repeat_count = DEFAULT_REPEAT_COUNT;
int num_thread = DEFAULT_THREAD_COUNT;
char* model_file = NULL;
char* image_file = NULL;
float mean[3] = {127.f, 127.f, 127.f};
float scale[3] = {1.0f / 128, 1.0f / 128, 1.0f / 128};
int res;
while ((res = getopt(argc, argv, "m:i:r:t:h:")) != -1)
{
switch (res)
{
case 'm':
model_file = optarg;
break;
case 'i':
image_file = optarg;
break;
case 'r':
repeat_count = atoi(optarg);
break;
case 't':
num_thread = atoi(optarg);
break;
case 'h':
show_usage();
return 0;
default:
break;
}
}
/* check files */
if (model_file == NULL)
{
fprintf(stderr, "Error: Tengine model file not specified!\n");
show_usage();
return -1;
}
if (image_file == NULL)
{
fprintf(stderr, "Error: Image file not specified!\n");
show_usage();
return -1;
}
if (!check_file_exist(model_file) || !check_file_exist(image_file))
return -1;
/* set runtime options */
struct options opt;
opt.num_thread = num_thread;
opt.cluster = TENGINE_CLUSTER_ALL;
opt.precision = TENGINE_MODE_FP32;
opt.affinity = 0;
/* inital tengine */
init_tengine();
fprintf(stderr, "tengine-lite library version: %s\n", get_tengine_version());
/* create graph, load tengine model xxx.tmfile */
graph_t graph = create_graph(NULL, "tengine", model_file);
if (graph == NULL)
{
fprintf(stderr, "Create graph failed.\n");
return -1;
}
/* set the input shape to initial the graph, and prerun graph to infer shape */
int img_size = g_tensor_in_h * g_tensor_in_w * 3;
int dims[] = {1, 3, g_tensor_in_h, g_tensor_in_w}; // nchw
float* input_data = (float*)malloc(img_size * sizeof(float));
tensor_t input_tensor = get_graph_input_tensor(graph, 0, 0);
if (input_tensor == NULL)
{
fprintf(stderr, "Get input tensor failed\n");
return -1;
}
if (set_tensor_shape(input_tensor, dims, 4) < 0)
{
fprintf(stderr, "Set input tensor shape failed\n");
return -1;
}
if (set_tensor_buffer(input_tensor, input_data, img_size * sizeof(float)) < 0)
{
fprintf(stderr, "Set input tensor buffer failed\n");
return -1;
}
/* prerun graph, set work options(num_thread, cluster, precision) */
if (prerun_graph_multithread(graph, opt) < 0)
{
fprintf(stderr, "Prerun graph failed\n");
return -1;
}
/* prepare process input data, set the data mem to input tensor */
get_input_data(image_file, input_data, g_tensor_in_h, g_tensor_in_w, mean, scale);
// input rgb
image swaprgb_img = {0};
swaprgb_img.c = 3;
swaprgb_img.w = g_tensor_in_w;
swaprgb_img.h = g_tensor_in_h;
swaprgb_img.data = input_data;
rgb2bgr_permute(swaprgb_img);
/* run graph */
double min_time = DBL_MAX;
double max_time = DBL_MIN;
double total_time = 0.;
for (int i = 0; i < repeat_count; i++)
{
double start = get_current_time();
if (run_graph(graph, 1) < 0)
{
fprintf(stderr, "Run graph failed\n");
return -1;
}
double end = get_current_time();
double cur = end - start;
total_time += cur;
if (min_time > cur)
min_time = cur;
if (max_time < cur)
max_time = cur;
}
fprintf(stderr, "Repeat %d times, thread %d, avg time %.2f ms, max_time %.2f ms, min_time %.2f ms\n", repeat_count,
num_thread, total_time / repeat_count, max_time, min_time);
fprintf(stderr, "--------------------------------------\n");
/* process the detection result */
tensor_t boxs_tensor = get_graph_output_tensor(graph, 0, 0);
tensor_t scores_tensor = get_graph_output_tensor(graph, 1, 0);
float* boxs_data = (float*)get_tensor_buffer(boxs_tensor);
float* scores_data = (float*)get_tensor_buffer(scores_tensor);
post_process_ultraface(image_file, boxs_data, scores_data);
/* release tengine */
free(input_data);
postrun_graph(graph);
destroy_graph(graph);
release_tengine();
return 0;
}