-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_ShanghaiTechA.py
265 lines (237 loc) · 11.2 KB
/
train_ShanghaiTechA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from __future__ import division
import random
import sys, os
import time
import numpy as np
import cPickle
import keras
from keras.utils import generic_utils
from keras.utils import GeneratorEnqueuer
from keras.optimizers import Adam
from keras.layers import Input
from keras.models import Model
from keras_csp import config, data_generators
from keras_csp import losses as losses
from keras_csp.utilsfunc import load_json, save_json
from keras_csp.detector import detect_main
from shutil import copyfile
from numpy.random import seed
seed(7)
from tensorflow import set_random_seed
set_random_seed(7)
# get the config parameters
C = config.Config()
C.gpu_ids = '0,1,2'
num_gpu = len(C.gpu_ids.split(','))
C.onegpu = 4
C.size_train = (704, 704)
C.init_lr = 2e-4 * (num_gpu/8.)
C.offset = False
C.scale = 'h'
C.num_scale = 1
C.num_epochs = 40
C.iter_per_epoch = 2400#4000
C.down = 1
batchsize = C.onegpu * num_gpu
os.environ["CUDA_VISIBLE_DEVICES"] = C.gpu_ids
if C.offset:
C.path_history = None#''output/valmodels/ShanghaiTechA/%s/off' % (C.scale)
else:
C.path_history = None#'output/valmodels/ShanghaiTechA/%s/nooff' % (C.scale)
C.update_thr = 0.6
C.update_weights_thr = 10
C.alpha = 1
# get the training data
cache_path = 'data/cache/ShanghaiTechA/train'
cache_path_updated = 'data/cache/ShanghaiTechA/train_updated'
from keras_csp.resnet50_full_res import nn_p3p4p5_fpn as network
weight_path = 'data/models/resnet50_weights_tf_dim_ordering_tf_kernels.h5'
input_shape_img = (None, None, 3)
img_input = Input(shape=input_shape_img)
# define the network prediction
preds = network(img_input, offset=C.offset, num_scale=C.num_scale, trainable=True)
# preds_tea = nn.nn_p3p4p5(img_input, offset=C.offset, num_scale=C.num_scale, trainable=True)
model = Model(img_input, preds)
if num_gpu>1:
from keras_csp.parallel_model import ParallelModel
model = ParallelModel(model, int(num_gpu))
# model_stu = Model(img_input, preds)
# model_tea = Model(img_input, preds_tea)
if C.path_history is not None:
history = load_json(C.path_history + '/history.json')
path_model = C.path_history + '/net_last.hdf5' #history["path_last_model"]
model.load_weights(path_model, by_name=True)
# model_tea.load_weights(path_model, by_name=True)
s_epoch = history["train"][-1]["epoch"]
best_loss = history["best_loss"]
history["Config"] = {k:v for k, v in C.__dict__.items() if not (k.startswith('__') and k.endswith('__'))}
out_path = C.path_history
history["cache_path"] = cache_path_updated
cache_path = cache_path_updated+str(s_epoch)
print("Resuming epoch...{}".format(s_epoch))
else:
history = {"train": [],
"Config": {k:v for k, v in C.__dict__.items() if not (k.startswith('__') and k.endswith('__'))},
"cache_path": cache_path_updated,
"path_last_model": None,
"path_best_model": None,
"path_best_loss_model": None,
"best_epoch": 1,
"best_loss": np.Inf}
s_epoch = 0
best_loss = np.Inf
model.load_weights(weight_path, by_name=True)
# model_tea.load_weights(weight_path, by_name=True)
print 'load weights from {}'.format(weight_path)
print("Starting from scratch...")
if C.offset:
out_path = 'output/valmodels/ShanghaiTechA/%s/off' % (C.scale)
else:
out_path = 'output/valmodels/ShanghaiTechA/%s/nooff' % (C.scale)
if not os.path.exists(out_path):
os.makedirs(out_path)
C.path_history = out_path
cache_path = 'data/cache/ShanghaiTechA/train'
with open(cache_path, 'rb') as fid:
train_data = cPickle.load(fid)
num_imgs_train = len(train_data)
print 'num of training samples: {}'.format(num_imgs_train)
### for validation
cache_path_val = 'data/cache/ShanghaiTechA/train_val'
with open(cache_path_val, 'rb') as fid:
val_data = cPickle.load(fid)
cache_path_test = 'data/cache/ShanghaiTechA/test'
with open(cache_path_test, 'rb') as fid:
test_data = cPickle.load(fid)
input_shape_img_val = (None, None, 3)
img_input_val = Input(shape=input_shape_img_val)
preds_val = network(img_input_val, offset=C.offset, num_scale=C.num_scale, trainable=False)
model_val = Model(img_input_val, preds_val)
data_gen_train = data_generators.get_data_ShanghaiTechA_class(train_data, C, batchsize=batchsize)
data_generators_thread = data_generators.ThreadingBatches(data_gen_train)
optimizer = Adam(lr=C.init_lr)
if C.offset:
model.compile(optimizer=optimizer, loss=[losses.cls_center_full, losses.regr_h, losses.regr_offset])
else:
model.compile(optimizer=optimizer, loss=[losses.cls_center_full, losses.regr_h])
model.metrics_tensors += model.outputs
model.metrics_names += ['predictions']
epoch_length = int(C.iter_per_epoch/batchsize)
iter_num = 0
add_epoch = 0
losses = np.zeros((epoch_length, 3))
print('Starting training with lr {} and alpha {}'.format(C.init_lr, C.alpha))
start_time = time.time()
total_loss_r, cls_loss_r1, regr_loss_r1, offset_loss_r1 = [], [], [], []
best_mae = 1e8
log_mae_mse = {'log': []}
for epoch_num in range(s_epoch, C.num_epochs):
progbar = generic_utils.Progbar(epoch_length)
print('\nEpoch {}/{}'.format(epoch_num + 1 + add_epoch, C.num_epochs + C.add_epoch))
while True:
try:
train_dict = {}
# X, Y = next(data_gen_train)
X, Y, gt_ind_map, meta = data_generators_thread.popNextBatch()
loss_s1 = model.train_on_batch(X, Y)
gt_ct_ind = np.where(Y[0][:, :, :, -1] == 1)
if C.offset:
hms = loss_s1[4][..., 0]
else:
hms = loss_s1[3][..., 0]
hms = hms[gt_ct_ind]
gt_weights_map = Y[1][:, :, :, -1]
gt_weights_map = gt_weights_map[gt_ct_ind]
# ind = np.where(np.logical_and(hms > C.update_thr, gt_weights_map < C.update_weights_thr))
ind = np.where(hms > C.update_thr)
if ind[0].shape[0] > 0:
if C.offset:
height_map = np.exp(loss_s1[5][:, :, :, 0]) * C.down
else:
height_map = np.exp(loss_s1[4][:, :, :, 0]) * C.down
height_map = height_map[gt_ct_ind][ind]
gt_ind_map = gt_ind_map[gt_ct_ind][ind]
hms = hms[ind]
file_and_ratios = [meta[x] for x in gt_ct_ind[0][ind]]
modify_img_data = [[file_and_ratio[0], gt_box_ind, height / file_and_ratio[1], file_and_ratio[2], hm] for
file_and_ratio, gt_box_ind, height, hm in zip(file_and_ratios, gt_ind_map, height_map, hms)]
data_generators_thread.revise_ped_data(modify_img_data)
# for l in model_tea.layers:
# weights_tea = l.get_weights()
# if len(weights_tea)>0:
# if num_gpu > 1:
# weights_stu = model_stu.get_layer(name=l.name).get_weights()
# else:
# weights_stu = model.get_layer(name=l.name).get_weights()
# weights_tea = [C.alpha*w_tea + (1-C.alpha)*w_stu for (w_tea, w_stu) in zip(weights_tea, weights_stu)]
# l.set_weights(weights_tea)
# print loss_s1
losses[iter_num, 0] = loss_s1[1]
losses[iter_num, 1] = loss_s1[2]
if C.offset:
losses[iter_num, 2] = loss_s1[3]
else:
losses[iter_num, 2] = 0
iter_num += 1
if iter_num % 20 == 0:
progbar.update(iter_num,
[('cls', np.mean(losses[:iter_num, 0])), ('regr_h', np.mean(losses[:iter_num, 1])), ('offset', np.mean(losses[:iter_num, 2]))])
if iter_num == epoch_length:
cls_loss1 = np.mean(losses[:, 0])
regr_loss1 = np.mean(losses[:, 1])
offset_loss1 = np.mean(losses[:, 2])
total_loss = cls_loss1+regr_loss1+offset_loss1
total_loss_r.append(total_loss)
cls_loss_r1.append(cls_loss1)
regr_loss_r1.append(regr_loss1)
offset_loss_r1.append(offset_loss1)
print('Total loss: {}'.format(total_loss))
print('Elapsed time: {}'.format(time.time() - start_time))
iter_num = 0
start_time = time.time()
train_dict["total_loss"] = total_loss
train_dict["cls_loss"] = cls_loss1
train_dict["regr_loss"] = regr_loss1
train_dict["offset_loss"] = offset_loss1
train_dict["epoch"] = epoch_num + 1 + add_epoch
history["train"] += [train_dict]
if cls_loss1 < best_loss:
print('Classification loss decreased from {} to {}, saving weights'.format(best_loss, cls_loss1))
best_loss = cls_loss1
history["best_loss"] = cls_loss1
history["path_best_loss_model"] = os.path.join(out_path,'net_e{}_l{}.hdf5'.format(epoch_num + 1 + add_epoch,cls_loss1))
model.save_weights(os.path.join(out_path, 'net_last.hdf5'))
history["path_last_model"] = os.path.join(out_path, 'net_last.hdf5')
save_json(C.path_history + '/history.json', history)
data_generators_thread.save_ped_data(cache_path_updated + str(epoch_num + 1 + add_epoch))
break
except Exception as e:
print ('Exception: {}'.format(e))
continue
if epoch_num+1>30 and epoch_num % 1 == 0:
print('\nVal Epoch {}/{}'.format(epoch_num + 1 + add_epoch, C.num_epochs + C.add_epoch))
model_val.load_weights(os.path.join(out_path, 'net_last.hdf5'), by_name=True)
mae, mse, thr, mae_list, mse_list = detect_main(model_val, val_data, C)
print 'Val Current: MAE: {:.3f}, Current MSE: {:.3f} at Threshold: {:.2f}'.format(mae, mse, thr)
mae_mse_dict = {}
mae_mse_dict['epoch'] = epoch_num + 1 + add_epoch
mae_mse_dict['mae'] = mae_list
mae_mse_dict['mse'] = mse_list
log_mae_mse['log'] += [mae_mse_dict]
if mae <= best_mae:
best_mae, best_mse, best_thr = mae, mse, thr
best_val = 'Val Best: MAE: {:.3f}, MSE: {:.3f} at Threshold: {:.2f} at Epoch: {}'.format(best_mae,
best_mse,
best_thr,
epoch_num + 1 + add_epoch)
print best_val
log_mae_mse['best_val'] = best_val
copyfile(os.path.join(out_path, 'net_last.hdf5'), os.path.join(out_path, 'net_best.hdf5'))
#update history
history["best_epoch"] = epoch_num + 1 + add_epoch
history["path_best_model"] = os.path.join(out_path,'net_e{}.hdf5'.format(epoch_num + 1 + add_epoch))
if epoch_num + 1 > 30:
model.save_weights(os.path.join(out_path, 'net_e{}.hdf5'.format(epoch_num + 1 + add_epoch)))
save_json(C.path_history + '/history.json', history)
save_json(C.path_history + '/log_mae_mse.json', log_mae_mse)
print('Training complete, exiting.')