-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
57 lines (48 loc) · 2.43 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
parser = argparse.ArgumentParser(description='TransCrowd')
# Data specifications
parser.add_argument('--dataset', type=str, default='ShanghaiA',
help='choice train dataset')
parser.add_argument('--save_path', type=str, default='./save_file/A_baseline',
help='save checkpoint directory')
parser.add_argument('--workers', type=int, default=16,
help='load data workers')
parser.add_argument('--print_freq', type=int, default=200,
help='print frequency')
parser.add_argument('--start_epoch', type=int, default=0,
help='start epoch for training')
# Model specifications
parser.add_argument('--test_dataset', type=str, default='UCF_QNRF',
help='choice train dataset')
# parser.add_argument('--pre', type=str, default=None,
# help='pre-trained model directory')
parser.add_argument('--pre', type=str, default='./save_file/A_baseline_4/model_best_66.1.pth',
help='pre-trained model directory')
# Optimization specifications
parser.add_argument('--batch_size', type=int, default=8,
help='input batch size for training')
parser.add_argument('--weight_decay', type=float, default= 1e-4,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.95,
help='momentum')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train')
parser.add_argument('--ref_pred_epoch', type=int, default=20,
help='the epoch starting to refer to the predicted class')
parser.add_argument('--seed', type=int, default=1,
help='random seed')
parser.add_argument('--best_pred', type=int, default=1e5,
help='best pred')
parser.add_argument('--gpu_id', type=str, default='0',
help='gpu id')
# nni config
parser.add_argument('--lr', type=float, default=1e-5,
help='learning rate')
parser.add_argument('--model_type', type=str, default='token',
help='model type')
parser.add_argument('--mode', type=int, default=0,
help='mode for swin transformer only. 0: channel GAP, 1: TransCrowd GAP, 2: Res block, 3: Res SE block')
#多GPU并行
#parser.add_argument("--local_rank", default=os.getenv('LOCAL_RANK', -1), type=int)
args = parser.parse_args()
return_args = parser.parse_args()