-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
313 lines (246 loc) · 9.53 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from __future__ import division
import warnings
from Networks.models import base_patch16_384_token, base_patch16_384_gap, base_patch16_384_attention, \
base_patch16_384_fgap, base_patch16_384_swin, base_patch16_384_effnet, base_patch16_384_mamba
import torch.nn as nn
from torchvision import transforms
import dataset
import math
from utils import save_checkpoint, setup_seed
import torch
import os
import logging
import nni
from nni.utils import merge_parameter
from config import return_args, args
import numpy as np
from image import load_data
warnings.filterwarnings('ignore')
import time
setup_seed(args.seed)
logger = logging.getLogger('mnist_AutoML')
def main(args):
if args['dataset'] == 'ShanghaiA':
train_file = './npydata/ShanghaiA_train.npy'
test_file = './npydata/ShanghaiA_test.npy'
elif args['dataset'] == 'ShanghaiB':
train_file = './npydata/ShanghaiB_train.npy'
test_file = './npydata/ShanghaiB_test.npy'
elif args['dataset'] == 'UCF_QNRF':
train_file = './npydata/qnrf_train.npy'
test_file = './npydata/qnrf_test.npy'
elif args['dataset'] == 'JHU':
train_file = './npydata/jhu_train.npy'
test_file = './npydata/jhu_val.npy'
elif args['dataset'] == 'NWPU':
train_file = './npydata/nwpu_train.npy'
test_file = './npydata/nwpu_val.npy'
with open(train_file, 'rb') as outfile:
train_list = np.load(outfile).tolist()
with open(test_file, 'rb') as outfile:
val_list = np.load(outfile).tolist()
print(len(train_list), len(val_list))
os.environ['CUDA_VISIBLE_DEVICES'] = args['gpu_id']
if args['model_type'] == 'token':
model = base_patch16_384_token(pretrained=True)
elif args['model_type'] == 'gap':
model = base_patch16_384_gap(pretrained=True)
elif args['model_type'] == 'attention':
model = base_patch16_384_attention(pretrained=True)
elif args['model_type'] == 'swin':
model = base_patch16_384_swin(pretrained=True, mode=args['mode'])
elif args['model_type'] == 'fgap':
model = base_patch16_384_fgap(pretrained=True)
elif args['model_type'] == 'effnet':
model = base_patch16_384_effnet()
elif args['model_type'] == 'mamba':
model = base_patch16_384_mamba(pretrained=False,mode = args['mode'])
else:
print("Do not have the network: {}".format(args['model_type']))
exit(0)
model = nn.DataParallel(model, device_ids=[0])
model = model.cuda()
criterion = nn.L1Loss(size_average=False).cuda()
optimizer = torch.optim.Adam(
[ #
{'params': model.parameters(), 'lr': args['lr']},
], lr=args['lr'], weight_decay=args['weight_decay'])
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[300], gamma=0.1, last_epoch=-1)
print(args['pre'])
# args['save_path'] = args['save_path'] + str(args['rdt'])
print(args['save_path'])#./output/ShanghaiA_swim_cb
if not os.path.exists(args['save_path']):
os.makedirs(args['save_path'])
if args['pre']:
if os.path.isfile(args['pre']):
print("=> loading checkpoint '{}'".format(args['pre']))
checkpoint = torch.load(args['pre'])
model.load_state_dict(checkpoint['state_dict'], strict=False)
args['start_epoch'] = checkpoint['epoch']
args['best_pred'] = checkpoint['best_prec1']
else:
print("=> no checkpoint found at '{}'".format(args['pre']))
torch.set_num_threads(args['workers'])
print(args['best_pred'], args['start_epoch'])
test_data = pre_data(val_list, args, train=False)#
'''inference'''
prec1 = validate(test_data, model, args)
print(' * best MAE {mae:.3f} '.format(mae=args['best_pred']))
def pre_data(train_list, args, train):
print("Pre_load dataset ......")
data_keys = {}
count = 0
for j in range(len(train_list)):
Img_path = train_list[j]
fname = os.path.basename(Img_path)
img, gt_count = load_data(Img_path, args, train)
blob = {}
blob['img'] = img
blob['gt_count'] = gt_count
blob['fname'] = fname
data_keys[count] = blob
count += 1
'''for debug'''
# if j> 10:
# break
return data_keys
def train(Pre_data, model, criterion, optimizer, epoch, args, scheduler):
losses = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
train_loader = torch.utils.data.DataLoader(
dataset.listDataset(Pre_data, args['save_path'],
shuffle=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
]),
train=True,
batch_size=args['batch_size'],
num_workers=args['workers'],
args=args),
batch_size=args['batch_size'], drop_last=False)
args['lr'] = optimizer.param_groups[0]['lr']
print('epoch %d, processed %d samples, lr %.10f' % (epoch, epoch * len(train_loader.dataset), args['lr']))
model.train()
end = time.time()
for i, (fname, img, gt_count) in enumerate(train_loader):
data_time.update(time.time() - end)
img = img.cuda()
out1 = model(img)
gt_count = gt_count.type(torch.FloatTensor).cuda().unsqueeze(1)
# print(out1.shape, kpoint.shape)
loss = criterion(out1, gt_count)
losses.update(loss.item(), img.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args['print_freq'] == 0:
print('4_Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses))
scheduler.step()
def validate(Pre_data, model, args):
print('begin test')
batch_size = 1
test_loader = torch.utils.data.DataLoader(
dataset.listDataset(Pre_data, args['save_path'],
shuffle=False,
transform=transforms.Compose([
transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
]),
args=args, train=False),
batch_size=1)
model.eval()
mae1 = 0.0
mae2 = 0.0
mae3 = 0.0
mae4 = 0.0
mse1 = 0.0
mse2 = 0.0
mse3 = 0.0
mse4 = 0.0
mse = 0.0
visi = []
index = 0
throughput = AverageMeter()
a = 0
b = 0
c = 0
d = 0
for i, (fname, img, gt_count) in enumerate(test_loader):
img = img.cuda()
if len(img.shape) == 5:
img = img.squeeze(0)
if len(img.shape) == 3:
img = img.unsqueeze(0)
if i>10:
start_time = time.time()
with torch.no_grad():
out1 = model(img)
count = torch.sum(out1).item()
if i>10:
during_time = time.time() - start_time
throughput.update(during_time,1)
gt_count = torch.sum(gt_count).item()
if gt_count < 235:
mae1 += abs(gt_count - count)
mse1 += abs(gt_count - count) * abs(gt_count - count)
smae1 = mae1
smse1 = mse1
a += 1
if 234 < gt_count < 425:
mae2 += abs(gt_count - count)
mse2 += abs(gt_count - count) * abs(gt_count - count)
smae2 = mae2
smse2 = mse2
b += 1
if 424 < gt_count:
mae3 += abs(gt_count - count)
mse3 += abs(gt_count - count) * abs(gt_count - count)
smae3 = mae3
smse3 = mse3
c += 1
if a != 0:
mae1 = mae1 * 1.0 / a
mse1 = math.sqrt(mse1 / a)
if b != 0:
mae2 = mae2 * 1.0 / b
mse2 = math.sqrt(mse2 / b)
if c != 0:
mae3 = mae3 * 1.0 / c
mse3 = math.sqrt(mse3 / c)
sum_mae =(smae1+smae2+smae3)/182
sum_mse=math.sqrt(smse1+smse2+smse3 /182)
print(' \n* MAE1 {mae1:.3f}\n'.format(mae1=mae1),'* MSE1 {mse1:.3f}'.format(mse1=mse1),' \n* MAE2 {mae2:.3f}\n'.format(mae2=mae2),'* MSE2 {mse2:.3f}'.format(mse2=mse2))
print(' \n* MAE3 {mae3:.3f}\n'.format(mae3=mae3),'* MSE {mse3:.3f}'.format(mse3=mse3),' \n* SUM_MAE {mae4:.3f}\n'.format(mae4=sum_mae),'* SUM_MSE {mse4:.3f}'.format(mse4=sum_mse))
print(a,b,c,d,sum)
return sum
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
tuner_params = nni.get_next_parameter()
logger.debug(tuner_params)
params = vars(merge_parameter(return_args, tuner_params))
print(params)
main(params)