-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmasking.py
39 lines (33 loc) · 1.32 KB
/
masking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import numpy as np
import math
class TriangularCausalMask():
def __init__(self, B, L, device="cpu"):
mask_shape = [B, 1, L, L]
with torch.no_grad():
self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)
@property
def mask(self):
return self._mask
class ProbMask():
def __init__(self, B, H, L, index, scores, device="cpu"):
_mask = torch.ones(L, scores.shape[-1], dtype=torch.bool).to(device).triu(1)
_mask_ex = _mask[None, None, :].expand(B, H, L, scores.shape[-1])
indicator = _mask_ex[torch.arange(B)[:, None, None],
torch.arange(H)[None, :, None],
index, :].to(device)
self._mask = indicator.view(scores.shape).to(device)
@property
def mask(self):
return self._mask
class LocalMask():
def __init__(self, B, L,S,device="cpu"):
mask_shape = [B, 1, L, S]
with torch.no_grad():
self.len = math.ceil(np.log2(L))
self._mask1 = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)
self._mask2 = ~torch.triu(torch.ones(mask_shape,dtype=torch.bool),diagonal=-self.len).to(device)
self._mask = self._mask1+self._mask2
@property
def mask(self):
return self._mask