-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathop.py
266 lines (220 loc) · 9.09 KB
/
op.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from scipy import signal
from scipy import linalg as la
from scipy import special as ss
def transition(measure, N, **measure_args):
""" A, B transition matrices for different measures.
measure: the type of measure
legt - Legendre (translated)
legs - Legendre (scaled)
glagt - generalized Laguerre (translated)
lagt, tlagt - previous versions of (tilted) Laguerre with slightly different normalization
"""
# Laguerre (translated)
if measure == 'lagt':
b = measure_args.get('beta', 1.0)
A = np.eye(N) / 2 - np.tril(np.ones((N, N)))
B = b * np.ones((N, 1))
if measure == 'tlagt':
# beta = 1 corresponds to no tilt
b = measure_args.get('beta', 1.0)
A = (1.-b)/2 * np.eye(N) - np.tril(np.ones((N, N)))
B = b * np.ones((N, 1))
# Generalized Laguerre
# alpha 0, beta small is most stable (limits to the 'lagt' measure)
# alpha 0, beta 1 has transition matrix A = [lower triangular 1]
if measure == 'glagt':
alpha = measure_args.get('alpha', 0.0)
beta = measure_args.get('beta', 0.01)
A = -np.eye(N) * (1 + beta) / 2 - np.tril(np.ones((N, N)), -1)
B = ss.binom(alpha + np.arange(N), np.arange(N))[:, None]
L = np.exp(.5 * (ss.gammaln(np.arange(N)+alpha+1) - ss.gammaln(np.arange(N)+1)))
A = (1./L[:, None]) * A * L[None, :]
B = (1./L[:, None]) * B * np.exp(-.5 * ss.gammaln(1-alpha)) * beta**((1-alpha)/2)
# Legendre (translated)
elif measure == 'legt':
Q = np.arange(N, dtype=np.float64)
R = (2*Q + 1) ** .5
j, i = np.meshgrid(Q, Q)
A = R[:, None] * np.where(i < j, (-1.)**(i-j), 1) * R[None, :]
B = R[:, None]
A = -A
# LMU: equivalent to LegT up to normalization
elif measure == 'lmu':
Q = np.arange(N, dtype=np.float64)
R = (2*Q + 1)[:, None] # / theta
j, i = np.meshgrid(Q, Q)
A = np.where(i < j, -1, (-1.)**(i-j+1)) * R
B = (-1.)**Q[:, None] * R
# Legendre (scaled)
elif measure == 'legs':
q = np.arange(N, dtype=np.float64)
col, row = np.meshgrid(q, q)
r = 2 * q + 1
M = -(np.where(row >= col, r, 0) - np.diag(q))
T = np.sqrt(np.diag(2 * q + 1))
A = T @ M @ np.linalg.inv(T)
B = np.diag(T)[:, None]
return A, B
class AdaptiveTransition(nn.Module):
def precompute_forward(self):
raise NotImplementedError
def precompute_backward(self):
raise NotImplementedError
def forward_mult(self, u, delta):
""" Computes (I + delta A) u
A: (n, n)
u: (..., n)
delta: (...) or scalar
output: (..., n)
"""
raise NotImplementedError
def inverse_mult(self, u, delta): # TODO swap u, delta everywhere
""" Computes (I - d A)^-1 u """
raise NotImplementedError
# @profile
def forward_diff(self, d, u, v, **kwargs):
""" Computes the 'forward diff' or Euler update rule: (I - d A)^-1 u + d B v
d: (...)
u: (..., n)
v: (...)
"""
# TODO F.linear should be replaced by broadcasting, self.B shouldl be shape (n) instead of (n, 1)
# x = self.forward_mult(u, d) + dt * F.linear(v.unsqueeze(-1), self.B)
v = d * v
v = v.unsqueeze(-1) * self.B
x = self.forward_mult(u, d, **kwargs)
x = x + v
return x
# @profile
def backward_diff(self, d, u, v, **kwargs):
""" Computes the 'forward diff' or Euler update rule: (I - d A)^-1 u + d (I - d A)^-1 B v
d: (...)
u: (..., n)
v: (...)
"""
v = d * v
v = v.unsqueeze(-1) * self.B
x = u + v
x = self.inverse_mult(x, d, **kwargs)
return x
# @profile
def bilinear(self, dt, u, v, alpha=.5, **kwargs):
""" Computes the bilinear (aka trapezoid or Tustin's) update rule.
(I - d/2 A)^-1 (I + d/2 A) u + d B (I - d/2 A)^-1 B v
"""
x = self.forward_mult(u, (1-alpha)*dt, **kwargs)
v = dt * v
v = v.unsqueeze(-1) * self.B
x = x + v
x = self.inverse_mult(x, (alpha)*dt, **kwargs)
return x
def zoh(self, dt, u, v):
raise NotImplementedError
def precompute(self, deltas):
""" deltas: list of step sizes """
for delta in deltas:
# self.forward_cache[delta] = self.precompute_forward(delta)
# self.backward_cache[delta] = self.precompute_backward(delta)
# TODO being lazy here; should check whether bilinear rule is being used
self.forward_cache[delta/2] = self.precompute_forward(delta/2)
self.backward_cache[delta/2] = self.precompute_backward(delta/2)
class ManualAdaptiveTransition(AdaptiveTransition):
def __init__(self, N, **kwargs):
""" Slow (n^3, or n^2 if step sizes are cached) version via manual matrix mult/inv
delta: optional list of step sizes to cache the transitions for
"""
super().__init__()
A, B = transition(type(self).measure, N, **kwargs)
self.N = N
self.register_buffer('A', torch.Tensor(A))
self.register_buffer('B', torch.Tensor(B[:, 0]))
self.register_buffer('I', torch.eye(self.N))
# Precompute stacked A, B matrix for zoh computation
AB = torch.cat((self.A, self.B.unsqueeze(-1)), dim=-1)
AB = torch.cat((AB, torch.zeros((1, N+1))), dim=0)
self.register_buffer('AB', AB)
self.forward_cache = {}
self.backward_cache = {}
print(f"ManualAdaptiveTransition:\n A {self.A}\nB {self.B}")
def precompute_forward(self, delta):
return self.I + delta*self.A
def precompute_backward(self, delta):
return torch.triangular_solve(self.I, self.I - delta*self.A, upper=False)[0]
def precompute_exp(self, delta):
# NOTE this does not work because torch has no matrix exponential yet, support ongoing:
# https://github.com/pytorch/pytorch/issues/9983
e = torch.expm(delta * self.AB)
return e[:-1, :-1], e[:-1, -1]
# @profile
def forward_mult(self, u, delta, precompute=True):
""" Computes (I + d A) u
A: (n, n)
u: (b1* d, n) d represents memory_size
delta: (b2*, d) or scalar
Assume len(b2) <= len(b1)
output: (broadcast(b1, b2)*, d, n)
"""
# For forward Euler, precompute materializes the matrix
if precompute:
if isinstance(delta, torch.Tensor):
delta = delta.unsqueeze(-1).unsqueeze(-1)
# print(delta, isinstance(delta, float), delta in self.forward_cache)
if isinstance(delta, float) and delta in self.forward_cache:
mat = self.forward_cache[delta]
else:
mat = self.precompute_forward(delta)
if len(u.shape) >= len(mat.shape):
# For memory efficiency, leverage extra batch dimensions
s = len(u.shape)
# TODO can make the permutation more efficient by just permuting the last 2 or 3 dim, but need to do more casework)
u = u.permute(list(range(1, s)) + [0])
x = mat @ u
x = x.permute([s-1] + list(range(s-1)))
else:
x = (mat @ u.unsqueeze(-1))[..., 0]
# x = F.linear(u, mat)
else:
if isinstance(delta, torch.Tensor):
delta = delta.unsqueeze(-1)
x = F.linear(u, self.A)
x = u + delta * x
return x
# @profile
def inverse_mult(self, u, delta, precompute=True):
""" Computes (I - d A)^-1 u """
if isinstance(delta, torch.Tensor):
delta = delta.unsqueeze(-1).unsqueeze(-1)
if precompute:
if isinstance(delta, float) and delta in self.backward_cache:
mat = self.backward_cache[delta]
else:
mat = self.precompute_backward(delta) # (n, n) or (..., n, n)
if len(u.shape) >= len(mat.shape):
# For memory efficiency, leverage extra batch dimensions
s = len(u.shape)
# TODO can make the permutation more efficient by just permuting the last 2 or 3 dim, but need to do more casework
u = u.permute(list(range(1, s)) + [0])
x = mat @ u
x = x.permute([s-1] + list(range(s-1)))
else:
x = (mat @ u.unsqueeze(-1))[..., 0]
else:
_A = self.I - delta*self.A
x = torch.triangular_solve(u.unsqueeze(-1), _A, upper=False)[0]
x = x[..., 0]
return x
def zoh(self, dt, u, v):
dA, dB = self.precompute_exp(dt)
return F.linear(u, dA) + dB * v.unsqueeze(-1)
class LegSAdaptiveTransitionManual(ManualAdaptiveTransition):
measure = 'legs'
class LegTAdaptiveTransitionManual(ManualAdaptiveTransition):
measure = 'legt'
class LagTAdaptiveTransitionManual(ManualAdaptiveTransition):
measure = 'lagt'
class TLagTAdaptiveTransitionManual(ManualAdaptiveTransition):
measure = 'tlagt'