
DoubleCrunch:
Brute-Force Analysis of Worst-Case Errors

Marat Dukhan
Georgia Institute of Technology

College of Computing
School of CSE

mdukhan3@gatech.edu

Richard Vuduc
Georgia Institute of Technology

College of Computing
School of CSE

richie@cc.gatech.edu

ABSTRACT
Analyzing the accuracy of floating-point implementations
of mathematical functions is a hard and complicated prob-
lem. The traditional approach to this problem is to use
formal specifications and proof-checkers, which employ for-
mal methods to verify the accuracy of an implementation.
This paper proposes a very different, complementary ap-
proach: use the raw compute power of high-performance
co-processors to compute the error for every possible double-
precision input. The new approach has three important ad-
vantages: it fully automates error analysis of floating-point
expressions, it can easily handle non-traditional floating-
point operations, such as approximate logarithm, and it
finds exact error bounds. We describe our brute-force error
analysis framework, called DoubleCrunch, implemented on
top of CUDA, OpenCL, and SIMD instrinsics. The empiri-
cal results suggest that despite the enormous search space,
practical problems can be analyzed even on a single work-
station; and complete functions could be analyzed in a rela-
tively short time using a supercomputer.

When in doubt, use brute force.

Ken Thompson [13]

1. INTRODUCTION
We consider the problem of how to compute the worst-

case error of a double-precision floating-point computation
in a single input variable. Examples include computing re-
ciprocals (1/x), evaluating polynomials, and evaluating el-
ementary functions (e.g., log x, sinx, 1√

x
), to name a few.

We specifically assume the existence of a highly-accurate,
but possibly slow, reference implementation; and we wish
to check an alternative—and presumably highly-tuned or
optimized—implementation against this reference.

While there are a number of powerful symbolic tools and
algorithms for rigorously bounding such errors [6, 1, 3], they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SuperComputing 2015 Austin, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

have found limited use in practice, owing primarily to the
difficulty of applying them. Indeed, most widely used li-
brary implementations of mathematical functions, such as
LibM, do not provide such mathematically-guaranteed er-
ror bounds, which might otherwise have been derived from
such tools; rather, their documented accuracies tend to be
based on selective testing on a random subset of inputs. For
instance, the CUDA Programming Guide provides accuracy
data for its mathematical functions, but with a notice that,
“the error bounds are generated from extensive but not ex-
haustive tests, so they are not guaranteed bounds” [4].

Proving rigorous error bounds is hard because there may
be multiple sources of errors: approximation errors in poly-
nomials and polynomial fractions; roundoff errors in the
evaluation of floating-point expressions; and inaccuracies in
tabulated values, among other reasons. Furthermore, these
errors might interact in a non-trivial way. For instance,
roundoff errors in Newton-Raphson iterations, which in prin-
ciple converge mathematically, might not actually converge
to the desired accuracy in a practical floating-point imple-
mentation.

Moreover, formal verification methods have some funda-
mental shortcomings:

1. Formal verification tools can not fully automate error
analysis. The authors of Gappa, a state-of-the-art tool
for formal analysis of floating-point expressions, note
that, “Gappa has evolved to include more and more au-
tomatic hints, but most real-world proofs still require
writing complex, problem-specific hints” [6]. The need
for expert hints is not a drawback of a specific imple-
mentation, but rather a fundamental limitation, which
arises from the infinite number of ways to rewrite a
symbolic expression which needs to be bounded.

2. Formal specifications have different syntax than imple-
mentation code, but the two must closely match each
other. Even a small difference between the implemen-
tation and the model, such as reordering of additions,
may invalidate the error analysis. Accordingly, every
change to the implementation code must be matched
by a similar change to the formal specification, which
is time-consuming and error-prone.

3. An increasing trend in modern instruction sets is to
include approximate floating-point operations. For in-
stance, Intel SSE, ARM NEON, and IBM QPX all
provide instructions for approximate reciprocal and re-
ciprocal square root computation; and IBM’s VSX and
Intel’s MIC and AVX-512 define approximate base-2

logarithm and exponential instructions. Approximate
instructions operate on the bit-level, mapping specific
bits of inputs to specific bits of outputs. This behavior
is hard to model with relative error bounds and hard
to analyze with formal specifications. However, it is
easy to emulate on co-processors and to embed into
brute-force analysis.

4. Formal verification tools do not find exact maximum
errors, but rather upper-bounds on the maximum er-
rors. Due to conservative analysis of interactions be-
tween different kinds of errors, they can substantially
overestimate the maximum errors. Such overestima-
tions may prompt a numerical analyst to use more
computations (e.g., higher-degree polynomials or larger
number of Newton-Raphson iterations) than factually
needed and cost performance.

In this paper, we propose an approach that complements
formal verification: to determine floating-point errors of uni-
variate exprsesions, we leverage the raw compute through-
put of modern manycore co-processors to implement a brute-
force testing scheme of every floating-point number in the
input domain.

Intuitively, this approach might sound näıve or might oth-
erwise seem highly impractical, especially for double-precision
computations where, for instance, there are 252 values in
the semi-closed interval, [1.0, 2.0). However, the history
of floating-point research has several examples to the con-
trary. In a 4-year long effort, Lefevre and Muller used a
hundred of SPARC workstations to find the worst cases of
several correctly-rounded floating-point functions [10]. To
deal with the enourmous search space, they they used smart
filtering of floating-point numbers, several high-level opti-
mizations, and implemented the most computationally de-
manding part in SPARC assembly. Recently Fortin, et al.,
demonstrated manyfold speedups on GPU over many-core
CPUs on searching hard-to-round cases and generating poly-
nomial approximations [7]. Encouraged by such work, this
paper suggests a framework for analyzing double-precision
floating-point mathematical functions. Unlike the efforts of
Lefevre and Muller and Fortin et al., our framework tar-
gets functions with errors above 0.5 units in the last place
(ULP), that is, not perfectly accurate implementations. We
offer practical demonstrations of brute-force error analysis
using three recent co-processors: the NVIDIA Tesla K40m
GPU, the AMD Radeon R280X GPU, the Intel Xeon Phi
SE10P.

We emphasize that the purpose of a brute-force approach
is not to replace the analytical methods of error analysis;
rather, it aims to enable a practical and effective separa-
tion of concerns: accuracy-focused researchers can focus
on developing highly-accurate reference implementations of
mathematical functions with guaranteed small error bounds,
while performance-focused researchers and implementers can
have a new automatic tool for comparing their implemen-
tations against these reference designs, to find worst-case
errors.

Contributions. Exhaustive testing in the style of Dou-
bleCrunch is a novel and highly unconventional application
of high-performance computing capabilities.

From a technical perspective, we believe DoubleCrunch
makes the following contributions:

1. We introduce and describe DoubleCrunch, a software
framework for brute-force analysis of worst-case errors
for univariate double-precision floating-point expres-
sions. DoubleCrunch fully automates worst-case error
analysis and can use CUDA GPUs, OpenCL GPUs,
Intel Xeon Phi boards, or FMA-capable CPUs for ac-
celeration. Through our tests we ensured that all sup-
ported platforms generate bitwise identical results.

2. Using DoubleCrunch, we analyze the maximum er-
ror in double-precision reciprocal computation through
Newton-Raphson iterations without fused multiply-add
(FMA) operations. We do so by sieving 252 double-
precision inputs in [1, 2) range. We find that the final
error is not only larger than in Newton-Raphson itera-
tions with an FMA, but also crucially depends on the
initial approximation.

3. We use DoubleCrunch to compute the maximum round-
off error in 21-degree polynomial evaluation that ap-

proximates logarithms on
[√

2
2
,
√

2
]
. We demonstrate

that the roundoff error computed by DoubleCrunch is
smaller than the error bound produced by Gappa, a
state-of-the-art tool for floating-point roundoff error
analysis.

4. We estimate the time to perform a brute-force error
analysis of a complete function. This estimate sug-
gests that a univariate floating-point function can be
analyzed within just a few days on a modern supercom-
puter. Our estimate is based on projecting Double-
Crunch performance and efficiency on two error anal-
ysis tasks: Newton-Raphson iterations for reciprocal
and polynomial evaluation.

Limitations. DoubleCrunch is not a universal tool, and
we acknowledge its limitations:

1. DoubleCrunch requires a reference high-precision im-
plementation of the floating-point expression or func-
tion being analyzed. Such implementations must have
provably low error and cannot be implemented without
expertise in error analysis. However, once an expert
design such reference implementation, DoubleCrunch
users can treat it as a black box.

2. DoubleCrunch does not support brute-force analysis of
high-precision (quad-precision or double-double) func-
tions or multi-argument double-precision functions. We
do not believe that such analysis would be feasible in
the near future.

3. Brute-force analysis is computationally demanding, and
can take more time than analytical methods of error
analysis. For instance, DoubleCrunch computed the
roundoff error of polynomial evaluation in Sec. 5 in 58.7
hours on nVidia Tesla K40, while Gappa produces an
error bound in 44 miliseconds on Intel Core i7-4770K.

Despite these limitations, we believe DoubleCrunch is a
compelling demonstration of HPC to problems in experi-
mental applied mathematics, in the spirit of other propos-
als [2].

2. HIGH-PRECISION ARITHMETIC ON GPUS
AND ACCELERATORS

Table 1 summarizes our experimental platforms.

Table 1: Evaluated compute devices

Name
(processing units)

DP
GFLOPS

Programming
model

nVidia Tesla K40m
(15 @ 745 MHz)

1430 CUDA or OpenCL

Intel Xeon Phi SE10P
(61 @ 1100 MHz)

1074
MIC intrinsics
and OpenMP

AMD Radeon R9 280X
(32 @ 1020 MHz)

1044 OpenCL

Intel Xeon E3-1275 v3
(4 @ 3500 MHz)

224
AVX2 intrinsics
and OpenMP

3. DOUBLECRUNCH FRAMEWORK
The DoubleCrunch framework assists in brute-force search

for worst-case errors. The framework has multiple versions
(for CUDA, OpenCL, and MIC accelerator devices and for
FMA3, FMA4, AVX2, and AVX512-capable CPUs) which
share a common command-line driver and store data in the
same format. A user provides two functions: compute_reference
and compute_approximation. The compute_reference func-
tion must calculate a highly accurate reference value of the
target function and return it in double-double format. The
value does not need to be accurate to full double-double pre-
cision; for practical purposes it is enough to provide 10 ad-
ditional bits of accuracy beyond double precision. The com-

pute_approximation function is the implementation with
an unknown maximum error to be determined.

To assist the user with implementing compute_reference

and compute_approximation, DoubleCrunch provides a uni-
versal set of data types and utility functions that are then
mapped to CUDA, OpenCL, or C technologies. Depend-
ing on the target platform, the built-in data types DCdou-
ble, DCdoubledouble, DCfloat and DCmask either to scalar
C types, or to AVX, MIC or OpenCL vectors. Built-in
functions that operate on these data types are provided for
polynomial evaluation, error-free transformations, double-
double arithmetic, and emulation of special hardware in-
structions, such as approximate reciprocal instructions on
x86 and ARM. If a user implements both compute_reference

and compute_approximation using only built-in functions
and data types, DoubleCrunch can offload computations to
CUDA, OpenCL, MIC, or many-core CPUs without modi-
fications.

During the brute-force search, DoubleCrunch calls com-

pute_reference and compute_approximation for each double-
precision number in the search range, computes the absolute
difference between the reference value and the approxima-
tion, and scales it by ULP of the reference value. It then
computes the maximum ULP error in a block of 232 values
and, once a group of such blocks finishes computation on an
accelerator, forwards it to the host system and writes to a
file. As the search might take many hours and days, Double-
Crunch supports checkpointing; if the search is interrupted,
it can restart from the last computed group of blocks. The

framework provides a utility, crunch-status, to read the
DoubleCrunch checkpoint files, even while DoubleCrunch is
working. Another utility crunch-format aggregates maxi-
mum errors of groups of blocks and outputs the aggregated
errors in tab-delimited format.

The compute_reference and compute_approximation func-
tions are inlined into higher-level simulation entry point and
compiled by C99, CUDA, or OpenCL compiler. As floating-
point codes can be sensitive even to the smallest perturba-
tions, DoubleCrunch configures compilation process to avoid
unsafe floating-point optimizations:

1. When targeting CUDA, MIC instrinsics, or AVX-512,
DoubleCrunch implements all basic operations on DC-
double using directed rounding intrinsics, e.g. dadd rn
and mm512 add round pd.

2. On OpenCL DoubleCrunch adds FP CONTRACT pragma
to disable contraction of floating-point expressions.

3. For CPU targets DoubleCrunch adds compilation flags
that enforce strict floating-point environment and dis-
ables contraction of floating-point expressions.

Through rigirous testing we ensured that the above set-
tings were sufficient to produce bitwise identical results on
all supported platforms.

4. APPLICATION TO RECIPROCAL COM-
PUTATION

Many modern instruction sets have instructions for com-
puting approximate reciprocals. For instance, on x86 ar-
chitectures, the SSE instruction set introduced RCPSS and
RCPPS instructions, which compute approximate reciprocals
for a single-precision scalar or SIMD vector. The x86-based
Xeon Phi architecture, which does not support SSE, in-
cludes the VRCP23PS instruction to compute approximate
reciprocals for a SIMD vector. Its analogue on the ARM
NEON instruction set is called VRECPE.F32. These instruc-
tions have higher throughput and lower latency than IEEE
754-compliant division, but they pay for enhanced perfor-
mance with reduced accuracy.

Table 2: Accuracy of approximate reciprocal in-
structions

Processor family
Max error,
SP ULP

Lookup Table
(bits in → out

Intel x86/SSE 4, 995.550 11→ 12
Intel x86/MIC 0.900 23→ 23

AMD x86/3dnow! 532.262 15→ 16
AMD x86/SSE

(family 15h)
532.262 12→ 12

AMD x86/SSE
(other CPUs)

4, 762.276 15→ 16

ARM/NEON 45, 502.376 8→ 8

The accuracy of these instructions is not well-documented,
varying on different architectures and even on different fam-
ilies of x86 microarchitecture. However, as the approximate
reciprocal instructions operate on single-precision values, it
is easy to dump and analyze all possible inputs and outputs.

Table 2 demonstrates the results of our analysis of ap-
proximate reciprocal implementations. We found that Intel

Core 2, Nehalem, Sandy Bridge, Ivy Bridge, Haswell, Bon-
nell, and Silvermont microarchitectures share the same im-
plementation of the SSE approximate reciprocal instruction.
Intel Knights Corner (Xeon Phi) has a significantly more ac-
curate approximate reciprocal instruction, with a maximum
error below 1 ULP. AMD processors introduced an approxi-
mate reciprocal instruction with the 3dnow! instruction set.
This instruction was accurate to almost 15 bits, but oper-
ated only on a scalar. Later AMD processors supported SSE
instructions, which could compute approximate reciprocals
on both scalars and SIMD vectors, but their accuracy was
reduced compared to their 3dnow! counterparts. The recent
AMD Family 15h processors dropped support for the 3dnow!
instruction set, but use its more accurate implementation
for RCPSS and RCPPS SSE instructions. On all tested x86
processors that support the AVX instruction set, we found
no differences between SSE and AVX approximate recipro-
cal instructions. ARM processors introduced an approxi-
mate reciprocal instruction with the NEON SIMD instruc-
tion set. We tested the ARM NEON approximate recipro-
cal instruction on ARM Cortex-A8, Cortex-A9, Cortex-A15,
and Qualcomm Krait, and, unlike on x86 processors, found
no differences across various vendors and processor families.

Figure 1: Schema of operation of approximate re-
ciprocal instructions

Figure 1 explains how DoubleCrunch emulates approxi-
mate reciprocal instructions. The three components of a
floating-point number—the sign bit, exponent, and mantissa—
are processed independently. The sign bit is copied exactly.
The exponent is negated and decremented by 1.1 However,
only few bits of mantissa participate in the transformation
of x → 1

x
: the highest several bits of mantissa of x are

used as an index into a table that contains the high bits of
the mantissa of 1

x
. Importantly, the low bits of x are ig-

nored by the approximate reciprocal operation, and the low
bits of 1

x
are initialized to zeros. By analysing dumps of

inputs and outputs of approximate reciprocal instructions,
we found that most such instructions can be emulated with
rather small tables. The numbers of input and output bits
for the table lookup are specified in Tab. 2. Note that al-
though this model is convenient for software emulation, it is
not representative of the actual hardware implementation.
The patterns of approximation errors suggest that the tab-
ulated values are not chosen only to minimize the errors,

1Decrement is needed because when exponent part of x is 0
(1 < x < 2), the exponent part of 1/x is −1 (1

2
< x < 1)

and have additional structure at bit level. A plot of approx-
imation errors in ARM NEON’s VRECIP.F32 instruction is
presented in Fig. 2

Figure 2: Accuracy of VRECIP.F32 approximate re-
ciprocal instruction.

0.001

0.002

1.00 1.25 1.50 1.75 2.00
Input rangeR

ec
ip

ro
ca

l a
pp

ro
xi

m
at

io
n

er
ro

r Error type Absolute Relative

The accuracy of the approximate reciprocal obtained with
a special instruction can be improved by computing a few
Newton-Raphson iterations. Performance-wise, it makes sense
because most CPUs have non-pipelined floating-point divi-
sion units, but pipelined multiplication and addition units,
and Newton-Raphson iterations need only the latter opera-
tions. Mathematically, Newton-Raphson iterations converge
to the true value of the reciprocal. However, in an actual
floating-point implementation, the roundoff errors might pre-
vent convergence to the correctly rounded value of the recip-
rocal. When Newton-Raphson iterations are computed with
fused multiply-add operations, they provably converge to the
correctly rounded value of the reciprocal, except in one spe-
cial case when the input is 1 ULP less than a power of 2 and
the initial approximation is smaller in absolute value than
the true value of the reciprocal [11]. When fused multiply-
add operations are not available, convergence is not guar-
anteed, and the maximum error of the approximation after
several steps is an open question.

DOUBLE CRUNCH INLINE
DCdouble compute approximation (DCdouble x) {

DCfloat f l o a t x = fcvtd (x) ;
// I n i t i a l approximation mimicks ARM NEON
DCfloat y i n i t = approx rec ip arm neon (f l o a t x) ;
DCdouble y0 = dcvt f (y i n i t) ;
// Newton−Raphson i t e r a t i on s
DCdouble y1 = dmul (y0 , dsub (dconst (2 . 0) , dmul (y0 , x))) ;
DCdouble y2 = dmul (y1 , dsub (dconst (2 . 0) , dmul (y1 , x))) ;
DCdouble y3 = dmul (y2 , dsub (dconst (2 . 0) , dmul (y2 , x))) ;
return y3 ;

}

DOUBLE CRUNCH INLINE
DCdoubledouble compute re f e rence (DCdouble x) {

// Use DoubleCrunch bu i l t−in funct ion
return ddrcpd (x) ;

}

We used DoubleCrunch to resolve this question on our
evaluation platforms. Specifically, we simulate 3 Newton-
Raphson iterations for reciprocal computation using the ini-
tial approximations produced by Intel SSE and ARM NEON
implementations. The simulation considers all double-precision

numbers in the half-closed interval, [1.0, 2.0).2 Each double-
precision number x is converted to single-precision with round-
to-nearest-even rounding. Then we simulate the x86 RCPPS

or ARM VRECIP.F32 instructions on the single-precision in-
put, extend the result to double-precision and denote it y0.
Then, we perform three Newton-Raphson iterations:

yn+1 = yn · (2− yn · x)

where yn is the reciprocal approximation after n Newton-
Raphson iterations. At the end, we compute the absolute
difference between y3 and the value of 1/x computed in
double-double arithmetic and convert the absolute error to
ULPs of 1/x. The results of this simulation appear in Ta-
ble 3 and Fig. 3.

Table 3: Accuracy of double-precision approximate
reciprocal refined with 3 Newton-Raphson iterations
without fused multiply-add

Initial approximation
Max error,

double precision ULP
RCPPS on Intel x86/SSE 1.98309

VRECIP.F32 on ARM/NEON 1.99999

Figure 3: Accuracy of Newton-Raphson recipro-
cal computation with initial approximation by VRE-

CIP.F32

0.0

0.5

1.0

1.5

2.0

1.00 1.25 1.50 1.75 2.00
Input range

O
ut

pu
t e

rr
or

, U
LP

1.00

1.25

1.50

1.75

2.00
Error

Fig. 4 illustrates the performance of this DoubleCrunch
simulation on the three accelerators. Although Tesla has
more compute power than Radeon, the latter performs bet-
ter in this simulation: Tesla has 37% more FLOPS, yet
Radeon delivers 9% times better performance. We believe
that the extra performance per FLOPS on the Radeon is
due to a particularly efficient implementation of division:
on the AMD GCN architecture, double-precision division
requires only 2 instructions, while on nVidia Kepler it de-
composes into multiple Newton-Raphson iterations. Two
reasons explain why Xeon Phi co-processor underperforms
on this simulation. First, on Xeon Phi the double-precision
vector division operation is not supported in hardware; in-
stead, it is implemented with multiple simpler instructions.
Secondly, on Xeon Phi any integer, boolean, single-precision,
gather, or mask manipulation operations occupy instruction

2All non-zero finite floating-point numbers can be scaled into
this interval and the scale factor can be inverted at low cost.

slots that could be used for double-precision operations, thus
decreasing the effective double-precision peak.

Figure 4: Performance of Newton-Raphson Recip-
rocal Simulation

1.754

5.565

16.936

15.571

Xeon E3−1275 v3 (C+OpenMP)

Xeon Phi SE10P (C+OpenMP)

Radeon R9 280X (OpenCL)

Tesla K40m (CUDA)

0 5 10 15 20
GigaNumbers/second (more is better)

5. APPLICATION TO POLYNOMIAL EVAL-
UATION

Newton-Raphson reciprocal simulations exhibits patterns
that are inefficient on accelerators. To get a data point on
the other side of efficiency spectrum we simulated the evalu-
ation of a 21-degree polynomial approximation to the func-

tion log x on
√
2

2
≤ x ≤

√
2. The polynomial has a special

form with c0 = 0 and c1 = 1 and is evaluated as:

log x ≈ t + t · (t · P19(t))

where t ≡ x− 1 and P19 is a general-form 19-degree polyno-
mial evaluated through a Horner scheme with fused multiply-
add.

Figure 5: Roundoff Errors in Polynomial Evaluation

0.50

0.75

1.00

1.25

1.16 1.20 1.24 1.28
Input range

P
ol

yn
om

ia
l r

ou
nd

of
f e

rr
or

, U
LP

To get reference values, we evaluate the same polyno-
mial with compensated Horner scheme[8], which is equiva-
lent to evaluation of the polynomial in double-double arith-
metic, but requires fewer operations. Our implementation of
compensated Horner scheme mostly follows[9], but instead
of adding the coefficients of error polynomials and evalu-
ating one polynomial, we evaluate both error polynomials
and then accumulate the result. The scheme with addition
of polynomials saves floating-point operations by trading

FMAs for additions; however, on nVidia Kepler and Intel
Knights Corner architectures the cost of FMAs and addi-
tions is the same3, but computing two polynomials in par-
allel improves accuracy and exposes more instruction-level
parallelism.

The roundoff errors found by DoubleCrunch are substan-
tially lower than the upper bounds estimated by Gappa, a
state-of-the-art tool for floating-point error analysis. The
structure of the errors is presented on Fig. 5 in blue, and
Gappa estimate is shown in red.

Performance results for this simulation are depictured in
Fig. 6. On this task the CPU is disproportionally slower
than accelerators. We attribute this effect to imperfect la-
tency hiding in long dependency chains inside the compen-
sated Horner algorithm.

Figure 6: Performance of Polynomial Evaluation
Simulation

0.347

2.071

2.655

2.898

Xeon E3−1275 v3 (C+OpenMP)

Xeon Phi SE10P (C+OpenMP)

Radeon R9 280X (OpenCL)

Tesla K40m (CUDA)

0 1 2 3
GigaNumbers/second (more is better)

6. PERFORMANCE PROJECTION
While DoubleCrunch can be used on a single machine to

search a subset of double-precision numbers, an interesting
question is whether it is feasible to do brute-force error anal-
ysis for a complete LibM function on its whole domain. In
this section we attempt to answer this question without run-
ning an actual large-scale simulation.

To analyse a complete mathematical function DoubleCrunch
needs its high-precision version that would be used as a ref-
erence. Fortunately, the CRLibM[5] library internally pro-
vides exp function accurate to 113 bits4 as a non-public
implementation detail. To analyse feasibility of brute-force
analysis, we ported this implementation to CUDA and used
as a reference high-accuracy implementation of exp func-
tion in DoubleCrunch. We choose exp implementation from
the popular Cephes library[12] as an approximate imple-
mentation to be analysed and benchmarked DoubleCrunch
performance. On the Tesla K40m card the simulation per-
formed at 1.615 GigaNumbers per second. Both Cephes
and the accurate CRLibM implementations of exp are es-
sentially branch-free, thus we assume that this performance
level would be sustained on the whole domain of exp func-
tion, which includes ≈ 1.008 · 263 points. From this data,

3On AMD GCN architecture addition is cheaper than FMA,
but to preserve bit-exactness we use the same scheme as on
other accelerators
4It also contains expm1 accurate to 120 bits.

and assuming perfect scaling proportionally to the number
of FLOPS, we estimate the compute time on different sys-
tems. Results are presented in Tab. 4.

Table 4: Compute time for brute-force error analysis
of exp function on full range

Compute system Compute time
Tesla K40m 183 years

16× Tesla K80 5 years
1 PFLOPS GPU cluster 3 months

Titan cluster 3.5 days
1 EFLOPS GPU cluster 2 hours 17 minutes

7. CONCLUSION
We explored the possibility of exhaustive search for worst-

case errors of double-precision floating-point expressions and
described a software framework to aid such brute-force anal-
ysis. Despite the enormously huge search space, some prac-
tical problems can be solved even on a single machine with
consumer-grade GPU.

Acknowledgment
We thank Edmond Chow and his Intel Parallel Comput-
ing Center at Georgia Tech for access to Xeon Phi-based
platforms, as well as the NVIDIA CUDA Center of Excel-
lence for access to NVIDIA hardware. This material is based
upon work supported by the U.S. National Science Founda-
tion (NSF) Award Number 1339745, and CAREER Award
Number 0953100. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of NSF, Intel,
or NVIDIA.

8. REFERENCES
[1] Sollya: An environment for the development of

numerical codes, author=Chevillard, Sylvain and
Joldeş, Mioara and Lauter, Christoph,
booktitle=Mathematical Software–ICMS 2010,
pages=28–31, year=2010, publisher=Springer.

[2] D. H. Bailey and J. M. Borwein. Experimental applied
mathematics. 2012.

[3] S. Chevillard and C. Lauter. A certified infinite norm
for the implementation of elementary functions. In
Quality Software, 2007. QSIC’07. Seventh
International Conference on, pages 153–160. IEEE,
2007.

[4] N. Corporation. NVIDIA CUDA C Programming
Guide, 2014.

[5] C. Daramy-Loirat, D. Defour, F. de Dinechin,
M. Gallet, N. Gast, C. Q. Lauter, and J.-M. Muller.
Cr-libm a library of correctly rounded elementary
functions in double-precision, 2009.

[6] F. De Dinechin, C. Lauter, and G. Melquiond.
Certifying the floating-point implementation of an
elementary function using Gappa. Computers, IEEE
Transactions on, 60(2):242–253, 2011.

[7] P. Fortin, M. Gouicem, and S. Graillat.
GPU-accelerated generation of correctly-rounded
elementary functions. arXiv preprint arXiv:1211.3056,
2012.

[8] S. Graillat, P. Langlois, and N. Louvet. Compensated
horner scheme. 2005.

[9] S. Graillat, P. Langlois, and N. Louvet. Improving the
compensated horner scheme with a fused multiply and
add. In Proceedings of the 2006 ACM symposium on
Applied computing, pages 1323–1327. ACM, 2006.

[10] V. Lefèvre and J.-M. Muller. Worst cases for correct
rounding of the elementary functions in double
precision. In Computer Arithmetic, 2001. Proceedings.
15th IEEE Symposium on, pages 111–118. IEEE, 2001.

[11] P. Markstein. IA-64 and elementary functions: speed
and precision. Prentice Hall, 2000.

[12] S. L. B. Moshier. Methods and programs for
mathematical functions. Halsted Press, 1989.

[13] E. S. Raymond. The art of UNIX programming.
Prentice-Hall, 2003.

