forked from davidsandberg/facenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecode_msceleb_dataset.py
87 lines (75 loc) · 3.54 KB
/
decode_msceleb_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
"""Decode the MsCelebV1 dataset in TSV (tab separated values) format downloaded from
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from scipy import misc
import numpy as np
import base64
import sys
import os
import cv2
import argparse
import facenet
# File format: text files, each line is an image record containing 6 columns, delimited by TAB.
# Column1: Freebase MID
# Column2: Query/Name
# Column3: ImageSearchRank
# Column4: ImageURL
# Column5: PageURL
# Column6: ImageData_Base64Encoded
def main(args):
output_dir = os.path.expanduser(args.output_dir)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
# Store some git revision info in a text file in the output directory
src_path,_ = os.path.split(os.path.realpath(__file__))
facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv))
i = 0
for f in args.tsv_files:
for line in f:
fields = line.split('\t')
class_dir = fields[0]
img_name = fields[1] + '-' + fields[4] + '.' + args.output_format
img_string = fields[5]
img_dec_string = base64.b64decode(img_string)
img_data = np.fromstring(img_dec_string, dtype=np.uint8)
img = cv2.imdecode(img_data, cv2.IMREAD_COLOR) #pylint: disable=maybe-no-member
if args.size:
img = misc.imresize(img, (args.size, args.size), interp='bilinear')
full_class_dir = os.path.join(output_dir, class_dir)
if not os.path.exists(full_class_dir):
os.mkdir(full_class_dir)
full_path = os.path.join(full_class_dir, img_name.replace('/','_'))
cv2.imwrite(full_path, img) #pylint: disable=maybe-no-member
print('%8d: %s' % (i, full_path))
i += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('output_dir', type=str, help='Output base directory for the image dataset')
parser.add_argument('tsv_files', type=argparse.FileType('r'), nargs='+', help='Input TSV file name(s)')
parser.add_argument('--size', type=int, help='Images are resized to the given size')
parser.add_argument('--output_format', type=str, help='Format of the output images', default='png', choices=['png', 'jpg'])
main(parser.parse_args())