-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_avatarHD.py
409 lines (355 loc) · 18.8 KB
/
train_avatarHD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import argparse
import os
import time
import sys
from dataloader.dataloaderSR import Loader
sys.path.insert(1, './nerf')
os.environ['GPU_DEBUG'] = '3'
import numpy as np
import torch
import torchvision
import yaml
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import datetime
# from model_for_onnx.nerf_trainer_clean import Trainer
# from model_for_onnx.styleUnet import SWGAN_unet
from model.nerf_trainer import Trainer
from model.styleUnet import SWGAN_unet
import torch.nn.functional as F
from utils.training_util import mse2psnr, lpips_loss, load_partial_state_dict
from utils.cfgnode import CfgNode
import lpips
from utils.styleUnet_util import sample_data, mixing_noise, requires_grad, g_nonsaturating_loss, g_path_regularize, d_logistic_loss, accumulate, d_r1_loss, styleUnet_args
from model.styleUnet import Discriminator
from dataloader.dist_util import synchronize, get_rank
su_args = styleUnet_args()
def named_params_and_buffers(module):
assert isinstance(module, torch.nn.Module)
return list(module.named_parameters()) + list(module.named_buffers())
def copy_params_and_buffers(src_module, dst_module, require_all=False):
assert isinstance(src_module, torch.nn.Module)
assert isinstance(dst_module, torch.nn.Module)
src_tensors = dict(named_params_and_buffers(src_module))
for name, tensor in named_params_and_buffers(dst_module):
if not require_all:
assert (name in src_tensors) or (not require_all)
try:
tensor.copy_(src_tensors[name].detach()).requires_grad_(tensor.requires_grad)
except:
continue
else:
if name in src_tensors:
try:
tensor.copy_(src_tensors[name].detach()).requires_grad_(tensor.requires_grad)
except:
print(name, src_tensors[name].shape, tensor.shape)
assert False
else:
print('NotIn src_module', name)
assert False
def create_code_snapshot(root, dst_path,
extensions=(".py", ".h", ".cpp", ".cu",
".cc", ".cuh", ".json", ".sh", ".bat"),
exclude=()):
"""Creates tarball with the source code"""
import tarfile
from pathlib import Path
with tarfile.open(str(dst_path), "w:gz") as tar:
for path in Path(root).rglob("*"):
if '.git' in path.parts:
continue
exclude_flag = False
if len(exclude) > 0:
for k in exclude:
if k in path.parts:
exclude_flag = True
if exclude_flag:
continue
if path.suffix.lower() in extensions:
tar.add(path.as_posix(), arcname=path.relative_to(
root).as_posix(), recursive=True)
def main():
now = datetime.datetime.now()
parser = argparse.ArgumentParser()
parser.add_argument("--logdir", type=str, required=True)
parser.add_argument("--datadir", type=str, required=True)
parser.add_argument("--config", type=str, default='config/singleview_512_HD_base.yml', help="Path to (.yml) config file.")
parser.add_argument("--ckpt", type=str, default="", help="Path to load saved checkpoint from.")
parser.add_argument("--continue-training", action='store_true', default=False)
configargs = parser.parse_args()
# Read config file.
with open(configargs.config, "r") as f:
cfg_dict = yaml.load(f, Loader=yaml.FullLoader)
cfg = CfgNode(cfg_dict)
render_size, gen_size = cfg.models.StyleUnet.inp_size, cfg.models.StyleUnet.out_size
device = torch.device("cuda")
lpips_fn = lpips.LPIPS().to(device)
use_percep_loss = True
percep_loss_fn = None
if use_percep_loss:
percep_loss_fn = lpips.LPIPS(net='vgg').to(device)
# Load dataset
train_loader = Loader(split_file=os.path.join(configargs.datadir, 'sv_v31_all.json'), down_sample=cfg.dataset.down_sample,
mode='train', batch_size=su_args.batch, options=cfg, white_bg=True)
##################################
# ---------------------------------- Create Nerf Trainner & Discriminator ----------------------------------
nerf_render = Trainer(cfg, len(train_loader.dataset)).to(device)
generator = SWGAN_unet(inp_size=render_size, inp_ch=cfg.models.StyleUnet.inp_ch, out_size=gen_size, out_ch=3, style_dim=su_args.latent, c_dim=0,
n_mlp=su_args.n_mlp, channel_multiplier=su_args.channel_multiplier).to(device)
discriminator = Discriminator(gen_size, 3, channel_multiplier=su_args.channel_multiplier, c_dim=0).to(device)
g_ema = SWGAN_unet(inp_size=render_size, inp_ch=cfg.models.StyleUnet.inp_ch, out_size=gen_size, out_ch=3, style_dim=su_args.latent, c_dim=0,
n_mlp=su_args.n_mlp, channel_multiplier=su_args.channel_multiplier).to(device)
g_ema.eval()
accumulate(g_ema, generator, 0)
g_reg_ratio = su_args.g_reg_every / (su_args.g_reg_every + 1)
d_reg_ratio = su_args.d_reg_every / (su_args.d_reg_every + 1)
su_args.lr = 1e-3
g_optim = torch.optim.Adam(generator.parameters(), lr=su_args.lr * g_reg_ratio, betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),)
d_optim = torch.optim.Adam(discriminator.parameters(), lr=su_args.lr * d_reg_ratio, betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),)
nerf_optimizer = getattr(torch.optim, cfg.optimizer.type)([{'params': nerf_render.parameters()}], lr=cfg.optimizer.lr)
##################################
# ---------------------------------- Setup Logging & Load Checkpoint ----------------------------------
logdir = configargs.logdir
os.makedirs(logdir, exist_ok=True)
save_dir = os.path.join(logdir, 'sample')
# Write out config parameters.
if get_rank() == 0:
with open(os.path.join(logdir, "config.yml"), "w") as f:
f.write(cfg.dump()) # cfg, f, default_flow_style=False)
start_iter = -1
# Load an existing checkpoint, if a path is specified.
if os.path.exists(configargs.ckpt):
print(configargs.ckpt)
if not configargs.continue_training: # load from train_avatar_mp_multiRender
checkpoint = torch.load(configargs.ckpt) # , map_location=lambda storage, loc: storage)
nerf_render.load_state_dict(checkpoint["trainer_state_dict"])
# load pretrained gan
checkpoint = torch.load('pretrained_models/img_translation.ckpt')
generator.load_state_dict(checkpoint["g"])
discriminator.load_state_dict(checkpoint["d"])
g_ema.load_state_dict(checkpoint["g_ema"])
del checkpoint
else: # continue training
checkpoint = torch.load(configargs.ckpt)#, map_location=lambda storage, loc: storage)
nerf_render.load_state_dict(checkpoint["nerf_render"])
nerf_optimizer.load_state_dict(checkpoint["nerf_optimizer"])
generator.load_state_dict(checkpoint["g"])
discriminator.load_state_dict(checkpoint["d"])
g_ema.load_state_dict(checkpoint["g_ema"])
g_optim.load_state_dict(checkpoint["g_optim"])
d_optim.load_state_dict(checkpoint["d_optim"])
# start_iter = checkpoint["iter"]
del checkpoint
sample_z = torch.randn(su_args.batch, su_args.latent, device=device)
accum = 0.5 ** (32 / (10 * 1000))
rgb_loss_func = torch.nn.functional.mse_loss if cfg.experiment.rgb_loss == 'mse' else torch.nn.functional.l1_loss
# i = start_iter
loss_dict = {}
g_module = generator
d_module = discriminator
nerf_moudule = nerf_render
path_loss, path_lengths, r1_loss, mean_path_length = torch.tensor(0.), torch.tensor(0.), torch.tensor(0.), 0
pbar = tqdm(range(su_args.iter), initial=su_args.start_iter, dynamic_ncols=True, smoothing=0.01)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(os.path.join(logdir, 'checkpoint'), exist_ok=True)
tar_file = os.path.join(logdir, 'code_bk_%s.tar.gz' % now.strftime('%Y_%m_%d_%H_%M_%S'))
create_code_snapshot(os.path.split(os.path.abspath(__file__))[0], tar_file)
writer = SummaryWriter(logdir)
loader = sample_data(train_loader)
for idx in pbar:
i = idx + start_iter + 1
if i > su_args.iter:
print("Done!")
break
fidx, train_batch = next(loader)
batch_num = len(fidx)
gt_hr_img = train_batch['mv_rays_gt_color'].permute(0, 2, 1).reshape(batch_num, 3, gen_size, gen_size).to(device) # [B, 3, 512**2]
gt_lr_mask = train_batch['mv_rays'][..., -1:].permute(0, 2, 1).reshape(batch_num, 1, render_size, render_size).to(device) # [B, 1, 128**2]
inp_data = {'mode':'train', 'fidx': fidx, 'render_full_img':True,
'ray_batch': train_batch['mv_rays'][..., :-4].to(device), # [B, 128**2, 8-1]
'background_prior': train_batch['mv_rays'][..., -4:-1].to(device), # [B, 128**2, 3]
}
inp_data.update({'front_render_cond': train_batch['front_render_cond'].permute(0, 3, 1, 2).to(device), # [B, C, H, W]
'left_render_cond': train_batch['left_render_cond'].permute(0, 3, 1, 2).to(device), # [B, C, H, W]
'right_render_cond': train_batch['right_render_cond'].permute(0, 3, 1, 2).to(device),
'inv_head_T': train_batch['inv_head_T'].to(device)})
##################################
# ---------------------------------- Nerf render LR ----------------------------------
gt_lr_img = torch.nn.functional.interpolate(
torch.nn.functional.interpolate(gt_hr_img, size=(render_size, render_size), mode='bilinear', align_corners=True),
size=(gen_size, gen_size), mode='bilinear', align_corners=True)
gan_weight = 1.1 ** (i // 500)
gan_loss_weight = min(1e-3 * gan_weight, 0.1)
# ---------------------------------- StyleUnet generate HR ----------------------------------
g_regularize = i % su_args.g_reg_every == 0 # path length regularization
d_regularize = i % su_args.d_reg_every == 0
requires_grad(nerf_render, False)
requires_grad(generator, False)
requires_grad(discriminator, True)
with torch.no_grad():
render, _, _ = nerf_render(**inp_data) # [B, C, 128, 128]
noise = mixing_noise(batch_num, su_args.latent, su_args.mixing, device)
fake_img = generator(noise, render[:, 3:])
# lr_img = torch.nn.functional.interpolate(render[:, :3], size=(gen_size, gen_size), mode='bilinear', align_corners=True)
fake_pred = discriminator(fake_img, flat_pose=None)
real_pred = discriminator(gt_hr_img, flat_pose=None)
# fake_pred = discriminator(torch.cat([fake_img, lr_img], dim=1))
# real_pred = discriminator(torch.cat([gt_hr_img, gt_lr_img], dim=1))
d_loss = d_logistic_loss(real_pred, fake_pred) * gan_loss_weight
loss_dict["d"] = d_loss / gan_loss_weight
loss_dict["real_score"] = real_pred.mean()
loss_dict["fake_score"] = fake_pred.mean()
discriminator.zero_grad()
d_loss.backward()
d_optim.step()
if d_regularize:
gt_hr_img.requires_grad = True
# real_pred = discriminator(torch.cat([gt_hr_img, gt_lr_img], dim=1))
real_pred = discriminator(gt_hr_img, flat_pose=None)
r1_loss = d_r1_loss(real_pred, gt_hr_img) * gan_loss_weight
discriminator.zero_grad()
(su_args.r1 / 2 * r1_loss * su_args.d_reg_every + 0 * real_pred[0]).backward()
d_optim.step()
loss_dict["r1"] = r1_loss / gan_loss_weight
requires_grad(nerf_render, True)
render, mask, latent_code_loss = nerf_render(**inp_data) # [B, C, 128, 128]
lr_img = torch.nn.functional.interpolate(render[:, :3], size=(gen_size, gen_size), mode='bilinear', align_corners=True)
rgb_loss = rgb_loss_func(lr_img, gt_lr_img)
loss_dict["rgb_loss"] = rgb_loss.item()
nerf_loss = (rgb_loss + 1. * latent_code_loss)
if cfg.experiment.mask_weight > 0:
mask_loss = cfg.experiment.mask_weight * F.binary_cross_entropy(mask.clip(1e-3, 1.0 - 1e-3), gt_lr_mask)
loss_dict["mask_loss"] = mask_loss.item()
nerf_loss += mask_loss
loss_dict["nerf_loss"] = nerf_loss.item()
g_loss = nerf_loss
requires_grad(generator, True)
noise = mixing_noise(batch_num, su_args.latent, su_args.mixing, device)
fake_img = generator(noise, render[:, 3:])
requires_grad(discriminator, False)
# fake_pred = discriminator(torch.cat([fake_img, lr_img], dim=1))
fake_pred = discriminator(fake_img, flat_pose=None)
g_loss += g_nonsaturating_loss(fake_pred) * gan_loss_weight
loss_dict["g"] = g_nonsaturating_loss(fake_pred)
hr_l1_loss = torch.nn.functional.l1_loss(fake_img, gt_hr_img)
g_loss += hr_l1_loss #* 0
loss_dict["hr_l1"] = hr_l1_loss
if use_percep_loss:
percep_loss = lpips_loss(fake_img, gt_hr_img, percep_loss_fn)
g_loss += percep_loss * 0.1
nerf_render.zero_grad()
generator.zero_grad()
g_loss.backward()
g_optim.step()
nerf_optimizer.step()
psnr = mse2psnr(torch.nn.functional.mse_loss(lr_img, gt_lr_img).item())
SR_psnr = mse2psnr(torch.nn.functional.mse_loss(fake_img, gt_hr_img).item())
if False:#use_style and g_regularize: #TODO:derivative for cudnn_grid_sampler_backward is not implemented
path_batch_size = max(1, batch_num // su_args.path_batch_shrink)
requires_grad(nerf_render, False)
path_cond_img = render[:path_batch_size, 3:].detach().clone()
path_cond_img.requires_grad = True
# render, _ = nerf_render(inp_data) # [B, C, 128, 128]
noise = mixing_noise(path_batch_size, su_args.latent, su_args.mixing, device)
fake_img, latents = generator(noise, path_cond_img, return_latents=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(fake_img, latents, mean_path_length)
generator.zero_grad()
weighted_path_loss = su_args.path_regularize * su_args.g_reg_every * path_loss
if su_args.path_batch_shrink:
weighted_path_loss += 0 * fake_img[0, 0, 0, 0]
weighted_path_loss.backward()
g_optim.step()
accumulate(g_ema, g_module, accum)
hr_l1 = loss_dict["hr_l1"].item()
d_loss_val = loss_dict["d"].mean().item()
g_loss_val = loss_dict["g"].mean().item()
r1_val = loss_dict["r1"].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f"PSNR: {psnr:.4f};"
f"d: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; "
# f"path: {path_loss_val:.4f}; mean path: {mean_path_length.item():.4f}; "
)
)
writer.add_scalar("train/code_loss", latent_code_loss.item(), i)
writer.add_scalar("train/rgb_loss", loss_dict["rgb_loss"], i)
if cfg.experiment.mask_weight > 0:
writer.add_scalar("train/mask_loss", loss_dict["mask_loss"], i)
writer.add_scalar("train/psnr", psnr, i)
writer.add_scalar("train/d_loss_val", d_loss_val, i)
writer.add_scalar("train/g_loss_val", g_loss_val, i)
writer.add_scalar("train/r1_val", r1_val, i)
writer.add_scalar("train/SR_psnr", SR_psnr, i)
writer.add_scalar("train/SR_l1", hr_l1, i)
if percep_loss_fn is not None:
writer.add_scalar("train/percep_loss", percep_loss.item(), i)
if get_rank() == 0:
if i % cfg.experiment.validate_every == 0 or i == start_iter + 1:
with torch.no_grad():
g_ema.eval()
noise = [sample_z[:batch_num]]
sample = g_ema(noise, render[:, 3:])
lpips_value = lpips_loss(sample, gt_hr_img, lpips_fn)
writer.add_scalar("train_val/lpips", lpips_value, i)
torchvision.utils.save_image(
tensor=torch.cat([sample, lr_img, gt_hr_img], dim=3),
fp=f"{save_dir}/{str(i).zfill(6)}.png",
nrow=int(batch_num ** 0.5),
normalize=True,
range=(0, 1),
)
checkpoint_dict = {
"iter": i,
"nerf_optimizer": nerf_optimizer.state_dict(),
"g_optim": g_optim.state_dict(),
"d_optim": d_optim.state_dict(),
"nerf_render": nerf_moudule.state_dict(),
"g": g_module.state_dict(),
"d": d_module.state_dict(),
"g_ema": g_ema.state_dict(),
"latent_codes": nerf_moudule.latent_codes.data,
}
torch.save(checkpoint_dict, os.path.join(logdir, "latest.pt"))
if i % cfg.experiment.save_every == 0 or i == cfg.experiment.train_iters - 1 or i == start_iter + 1:
checkpoint_dict = {
"iter": i,
"nerf_optimizer": nerf_optimizer.state_dict(),
"g_optim": g_optim.state_dict(),
"d_optim": d_optim.state_dict(),
"nerf_render": nerf_moudule.state_dict(),
"g": g_module.state_dict(),
"d": d_module.state_dict(),
"g_ema": g_ema.state_dict(),
"latent_codes": nerf_moudule.latent_codes.data,
}
torch.save(
checkpoint_dict,
os.path.join(logdir, "checkpoint" + str(i).zfill(5) + ".ckpt"),
)
tqdm.write("================== Saved Checkpoint =================")
print("Done!")
def cast_to_image(tensor, dataformats='CHW'):
# Input tensor is (H, W, 3). Convert to (3, H, W).
tensor = tensor.permute(2, 0, 1)
tensor = tensor.clamp(0.0, 1.0)
# Conver to PIL Image and then np.array (output shape: (H, W, 3))
img = np.array(torchvision.transforms.ToPILImage()(tensor.detach().cpu()))
# Map back to shape (3, H, W), as tensorboard needs channels first.
if dataformats == 'CHW':
img = np.moveaxis(img, [-1], [0])
return img
def handle_pdb(sig, frame):
import pdb
pdb.Pdb().set_trace(frame)
def adjust_lr(cfg, i, optimizer):
num_decay_steps = cfg.scheduler.lr_decay * 1000
lr_new = cfg.optimizer.lr * (cfg.scheduler.lr_decay_factor ** (i / num_decay_steps))
for param_group in optimizer.param_groups:
param_group["lr"] = lr_new
return lr_new
if __name__ == "__main__":
np.random.seed(42)
torch.manual_seed(42)
main()