-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain_dop.py
307 lines (271 loc) · 12.6 KB
/
train_dop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import time
import json
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR, CyclicLR
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from model.loss2 import Cont_Loss
from model.loss import FocalLoss
from data_aug import Aug_data
from config import n_class, train_sets, camera_configs, radar_configs, rodnet_configs
from config import mean1, std1, mean2, std2, mean1_rv, std1_rv, mean2_rv, std2_rv, mean1_va, std1_va, mean2_va, std2_va
IS_Freeze = False
IS_Steplr = False
IS_Augdata = False
IS_MixAug = False
train_name = 'train'
train_stride = 8
detail_files = sorted(os.listdir(os.path.join('./data/data_details', train_name)))
if IS_Augdata:
if IS_MixAug:
print('Mixing type data augmentation')
else:
print('Single type data augmentation')
else:
print('No data augmentation')
def parse_args():
parser = argparse.ArgumentParser(description='Train RODNet.')
parser.add_argument('-m', '--model', type=str, dest='model', default='C3D',
help='choose rodnet model')
parser.add_argument('-md', '--modeldir', type=str, dest='model_dir',
help='file name to save trained model')
parser.add_argument('-dd', '--datadir', type=str, dest='data_dir', default='./data/',
help='directory to load data')
parser.add_argument('-ld', '--logdir', type=str, dest='log_dir', default='./results/',
help='directory to save trained model')
parser.add_argument('-sm', '--save_memory', action="store_true", help="use customized dataloader to save memory")
args = parser.parse_args()
return args
def create_dir_for_new_model(name='rodnet'):
model_name = name + '-' + time.strftime("%Y%m%d-%H%M%S")
if not os.path.exists(os.path.join(train_model_path, model_name)):
os.makedirs(os.path.join(train_model_path, model_name))
return model_name
if __name__ == "__main__":
"""
Example:
python train.py -m HG -dd /mnt/ssd2/rodnet/data_refine/ -ld /mnt/ssd2/rodnet/checkpoints/ \
-sm -md HG-20200122-104604
"""
args = parse_args()
if args.model == 'CDC':
from model.RODNet_CDC import RODNet
from dataLoader.CRDatasets_ra import CRDataset, CRDatasetSM
from dataLoader.CRDataLoader_ra import CRDataLoader
elif args.model == 'HG':
from model.RODNet_HG import RODNet
from dataLoader.CRDatasets_ra import CRDataset, CRDatasetSM
from dataLoader.CRDataLoader_ra import CRDataLoader
elif args.model == 'C3D':
from model.RODNet_3D import RODNet
from dataLoader.CRDatasets import CRDataset, CRDatasetSM
from dataLoader.CRDataLoader import CRDataLoader
else:
raise TypeError
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
train_model_path = args.log_dir
# create / load models
model_name = None
epoch_start = 0
iter_start = 0
Flipper = True
Norm = True
if args.model_dir is not None and os.path.exists(os.path.join(train_model_path, args.model_dir)):
model_dir = args.model_dir
models_loaded = sorted(os.listdir(os.path.join(train_model_path, model_dir)))
for fid, file in enumerate(models_loaded):
if not file.endswith('.pkl'):
del models_loaded[fid]
if len(models_loaded) == 0:
model_dir = create_dir_for_new_model()
else:
model_name = models_loaded[-1]
epoch_start = int(float(model_name.split('.')[0].split('_')[1]))
iter_start = int(float(model_name.split('.')[0].split('_')[2]))
else:
model_dir = create_dir_for_new_model(name=args.model)
train_viz_path = os.path.join(train_model_path, model_dir, 'train_viz')
if not os.path.exists(train_viz_path):
os.makedirs(train_viz_path)
writer = SummaryWriter(os.path.join(train_model_path, model_dir))
save_config_dict = {
'args': vars(args),
'camera': camera_configs,
'radar': radar_configs,
'rodnet': rodnet_configs,
'trainset': train_sets,
}
config_json_name = os.path.join(train_model_path, model_dir, 'config-'+time.strftime("%Y%m%d-%H%M%S")+'.json')
with open(config_json_name, 'w') as fp:
json.dump(save_config_dict, fp)
n_epoch = rodnet_configs['n_epoch']
win_size = rodnet_configs['win_size']
batch_size = rodnet_configs['batch_size']
lr = rodnet_configs['learning_rate']
stacked_num = rodnet_configs['stacked_num']
if not args.save_memory:
crdata_train = CRDataset(os.path.join(args.data_dir, 'data_details'),
os.path.join(args.data_dir, 'confmaps_gt'),
win_size=win_size, set_type='train', stride=8)
seq_names = crdata_train.seq_names
index_mapping = crdata_train.index_mapping
dataloader = DataLoader(crdata_train, batch_size=batch_size, shuffle=True, num_workers=0)
else:
crdata_train = CRDatasetSM(os.path.join(args.data_dir, 'data_details'),
os.path.join(args.data_dir, 'confmaps_gt'),
win_size=win_size, set_type=train_name, stride=train_stride,
is_Memory_Limit=True)
seq_names = crdata_train.seq_names
index_mapping = crdata_train.index_mapping
dataloader = CRDataLoader(crdata_train, batch_size=batch_size, shuffle=True)
# print training configurations
print("Number of sequences to train: %d" % crdata_train.n_seq)
print("Training files length: %d" % len(crdata_train))
print("Window size: %d" % win_size)
print("Number of epoches: %d" % n_epoch)
print("Batch size: %d" % batch_size)
print("Number of iterations in each epoch: %d" % int(len(crdata_train) / batch_size))
if args.model == 'CDC':
rodnet = RODNet(n_class=n_class, win_size=win_size).cuda()
criterion = nn.MSELoss()
stacked_num = 1
elif args.model == 'HG':
rodnet = RODNet(n_class=n_class, win_size=win_size, stacked_num=stacked_num).cuda()
criterion = FocalLoss()
elif args.model == 'C3D':
rodnet = RODNet(n_class=n_class, win_size=win_size).cuda()
criterion = FocalLoss()
stacked_num = 1
else:
raise TypeError
criterion3 = Cont_Loss()
# freeze the encoder layers:
if IS_Freeze:
for name, param in rodnet.named_parameters():
if 'c3d_encode' in name:
print(name)
param.requires_grad = False
optimizer = optim.Adam(filter(lambda p: p.requires_grad, rodnet.parameters()), lr=lr)
else:
optimizer = optim.Adam(rodnet.parameters(), lr=lr)
if IS_Steplr:
print('step learning rate')
scheduler = StepLR(optimizer, step_size=rodnet_configs['lr_step'], gamma=0.1)
else:
print('Cyclic learning rate')
scheduler = CyclicLR(optimizer, base_lr=1e-6, max_lr=1e-5, step_size_up=430, step_size_down=430,
cycle_momentum=False)
iter_count = 0
if model_name is not None:
checkpoint = torch.load(os.path.join(train_model_path, '%s/%s' % (model_dir, model_name)))
if 'optimizer_state_dict' in checkpoint:
rodnet.load_state_dict(checkpoint['model_state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch_start = checkpoint['epoch']
iter_start = checkpoint['iter']
loss_cp = checkpoint['loss']
if 'iter_count' in checkpoint:
iter_count = checkpoint['iter_count']
else:
rodnet.load_state_dict(checkpoint)
for epoch in range(epoch_start, n_epoch):
tic_load = time.time()
for iter, loaded_data in enumerate(dataloader):
if args.model == 'C3D':
data, data_rv, data_va, confmap_gt, obj_info, real_id = loaded_data
else:
data, confmap_gt, obj_info, real_id = loaded_data
flag = False
for id in real_id:
if id == -1:
# in case load npy fail
print("Warning: Loading NPY data failed! Skip this iteration")
tic_load = time.time()
flag = True
break
if flag:
continue
# Normalize the input:
if args.model == 'C3D':
if Norm:
for ib in range(len(real_id)):
seq_id, _, _ = index_mapping[real_id[ib]]
date_detail = int(detail_files[seq_id].split('_')[1])
if date_detail < 9:
data[ib, :] = (data[ib, :] - mean1) / std1
data_rv[ib, :] = (data_rv[ib, :] - mean1_rv) / std1_rv
data_va[ib, :] = (data_va[ib, :] - mean1_va) / std1_va
else:
data[ib, :] = (data[ib, :] - mean2) / std2
data_rv[ib, :] = (data_rv[ib, :] - mean2_rv) / std2_rv
data_va[ib, :] = (data_va[ib, :] - mean2_va) / std2_va
# data augmentation
if IS_Augdata:
if IS_MixAug:
data, data_rv, data_va, confmap_gt = Aug_data(data, data_rv, data_va, confmap_gt, type='mix')
else:
data, data_rv, data_va, confmap_gt = Aug_data(data, data_rv, data_va, confmap_gt)
else:
if Norm:
for ib in range(len(real_id)):
seq_id, _, _ = index_mapping[real_id[ib]]
date_detail = int(detail_files[seq_id].split('_')[1])
if date_detail < 9:
data[ib, :] = (data[ib, :] - mean1) / std1
else:
data[ib, :] = (data[ib, :] - mean2) / std2
# data augmentation
if IS_Augdata:
if IS_MixAug:
data, _, _, confmap_gt = Aug_data(data, None, None, confmap_gt, type='mix')
else:
data, _, _, confmap_gt = Aug_data(data, None, None, confmap_gt)
tic = time.time()
optimizer.zero_grad() # zero the parameter gradients
if args.model == 'C3D':
confmap_preds, confmap_preds2 = rodnet(data.float().cuda(), data_rv.float().cuda(), data_va.float().cuda())
else:
confmap_preds = rodnet(data.float().cuda())
loss_confmap = 0
if stacked_num > 1:
for i in range(stacked_num):
loss_cur = criterion(confmap_preds[i], confmap_gt.float().cuda())
loss_cont = criterion3(confmap_preds[i], confmap_gt.float().cuda())
loss_confmap += loss_cur + loss_cont
else:
loss_cur = criterion(confmap_preds, confmap_gt.float().cuda())
loss_cont = criterion3(confmap_preds, confmap_gt.float().cuda())
if args.model == 'C3D':
loss_cur2 = criterion(confmap_preds2, confmap_gt.float().cuda())
loss_confmap += loss_cur + loss_cont + loss_cur2 * 0.5
else:
loss_confmap += loss_cur
loss_confmap.backward()
optimizer.step()
writer.add_scalar('data/loss_all', loss_confmap.item(), iter_count)
writer.add_scalar('data/loss_confmap', loss_cur.item(), iter_count)
iter_count += 1
# print statistics
print('epoch %d, iter %d: loss: %.8f | load time: %.4f | backward time: %.4f' %
(epoch + 1, iter + 1, loss_confmap.item(), tic - tic_load, time.time() - tic))
if iter % 1000 == 0:
status_dict = {
'epoch': epoch,
'iter': iter,
'model_state_dict': rodnet.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss_confmap,
'iter_count': iter_count,
}
save_model_path = os.path.join(train_model_path,
'%s/rodnet_%02d_%010d_%06d.pkl' %
(model_dir, epoch+1, iter_count, iter+1))
torch.save(status_dict, save_model_path)
tic_load = time.time()
scheduler.step()
print('Training Finished.')