-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconfig_3dmatch.py
148 lines (117 loc) · 6.19 KB
/
config_3dmatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
arg_lists = []
parser = argparse.ArgumentParser()
def add_argument_group(name):
arg = parser.add_argument_group(name)
arg_lists.append(arg)
return arg
def str2bool(v):
return v.lower() in ('true', '1')
logging_arg = add_argument_group('Logging')
trainer_arg = add_argument_group('Trainer')
trainer_arg.add_argument('--trainer', type=str, default='HardestContrastiveLossTrainer')
trainer_arg.add_argument('--save_freq_epoch', type=int, default=1)
trainer_arg.add_argument('--batch_size', type=int, default=2)
trainer_arg.add_argument('--val_batch_size', type=int, default=1)
# Hard negative mining
trainer_arg.add_argument('--use_hard_negative', type=str2bool, default=True)
trainer_arg.add_argument('--hard_negative_sample_ratio', type=int, default=0.05)
trainer_arg.add_argument('--hard_negative_max_num', type=int, default=3000)
trainer_arg.add_argument('--num_pos_per_batch', type=int, default=1024)
trainer_arg.add_argument('--num_hn_samples_per_batch', type=int, default=256)
# Metric learning loss
trainer_arg.add_argument('--neg_thresh', type=float, default=1.4)
trainer_arg.add_argument('--pos_thresh', type=float, default=0.1)
trainer_arg.add_argument('--neg_weight', type=float, default=1)
# Data augmentation
trainer_arg.add_argument('--use_random_scale', type=str2bool, default=False)
trainer_arg.add_argument('--min_scale', type=float, default=0.8)
trainer_arg.add_argument('--max_scale', type=float, default=1.2)
trainer_arg.add_argument('--use_random_rotation', type=str2bool, default=True)
trainer_arg.add_argument('--rotation_range', type=float, default=360)
# Data loader configs
trainer_arg.add_argument('--train_phase', type=str, default="train")
trainer_arg.add_argument('--val_phase', type=str, default="val")
trainer_arg.add_argument('--test_phase', type=str, default="test")
trainer_arg.add_argument('--stat_freq', type=int, default=40)
trainer_arg.add_argument('--test_valid', type=str2bool, default=True)
trainer_arg.add_argument('--val_max_iter', type=int, default=400)
trainer_arg.add_argument('--val_epoch_freq', type=int, default=1)
trainer_arg.add_argument(
'--positive_pair_search_voxel_size_multiplier', type=float, default=1.5)
trainer_arg.add_argument('--hit_ratio_thresh', type=float, default=0.1)
# Triplets
trainer_arg.add_argument('--triplet_num_pos', type=int, default=256)
trainer_arg.add_argument('--triplet_num_hn', type=int, default=512)
trainer_arg.add_argument('--triplet_num_rand', type=int, default=1024)
# dNetwork specific configurations
net_arg = add_argument_group('Network')
net_arg.add_argument('--model', type=str, default='ResUNetBN2C')
net_arg.add_argument('--model_n_out', type=int, default=32, help='Feature dimension')
net_arg.add_argument('--conv1_kernel_size', type=int, default=5)
net_arg.add_argument('--normalize_feature', type=str2bool, default=True)
net_arg.add_argument('--dist_type', type=str, default='L2')
net_arg.add_argument('--best_val_metric', type=str, default='feat_match_ratio',help='[feat_match_ratio,rre,rte]')
# Optimizer arguments
opt_arg = add_argument_group('Optimizer')
opt_arg.add_argument('--optimizer', type=str, default='SGD')
opt_arg.add_argument('--max_epoch', type=int, default=200)
opt_arg.add_argument('--lr', type=float, default=1e-1)
opt_arg.add_argument('--momentum', type=float, default=0.8)
opt_arg.add_argument('--sgd_momentum', type=float, default=0.9)
opt_arg.add_argument('--sgd_dampening', type=float, default=0.1)
opt_arg.add_argument('--adam_beta1', type=float, default=0.9)
opt_arg.add_argument('--adam_beta2', type=float, default=0.999)
opt_arg.add_argument('--weight_decay', type=float, default=1e-4)
opt_arg.add_argument('--iter_size', type=int, default=1, help='accumulate gradient')
opt_arg.add_argument('--bn_momentum', type=float, default=0.05)
opt_arg.add_argument('--exp_gamma', type=float, default=0.99)
opt_arg.add_argument('--scheduler', type=str, default='ExpLR')
icp_path = "/DISK/qwt/datasets/kitti/data_odometry_velodyne/dataset/icp"
opt_arg.add_argument('--icp_cache_path', type=str, default=icp_path)
misc_arg = add_argument_group('Misc')
misc_arg.add_argument('--use_gpu', type=str2bool, default=True)
misc_arg.add_argument('--weights', type=str, default=None)
misc_arg.add_argument('--weights_dir', type=str, default=None)
misc_arg.add_argument('--resume', type=str, default=None)
misc_arg.add_argument('--fast_validation', type=str2bool, default=False)
misc_arg.add_argument('--nn_max_n',type=int,default=500,help='The maximum number of features to find nearest neighbors in batch')
# Dataset specific configurations
data_arg = add_argument_group('Data')
# ----------------------------------------------------------------------- #
# 3DMatch ---- |output path|
output_3DMatch = "outputs"
logging_arg.add_argument('--out_dir', type=str, default=output_3DMatch)
# 3DMatch ---- |resume dir|
misc_arg.add_argument('--resume_dir', type=str, default=None)
# 3DMtach ---- |num thread|
misc_arg.add_argument('--train_num_thread', type=int, default=2)
misc_arg.add_argument('--val_num_thread', type=int, default=1)
misc_arg.add_argument('--test_num_thread', type=int, default=2)
# 3DMatch ---- |dataset|
dataset_3DMatch = 'ThreeDMatchPairDataset'
data_arg.add_argument('--dataset', type=str, default=dataset_3DMatch)
# 3DMatch ---- |voxel size|
voxel_size_3DMatch = 0.025
# voxel_size_3DMatch = 0.05
data_arg.add_argument('--voxel_size', type=float, default=voxel_size_3DMatch)
# ----------------------------------------------------------------------- #
# Dataset path
data_path = "/DISK/qwt/datasets/Ours_train_0_01/train"
data_arg.add_argument('--threed_match_dir', type=str, default=data_path)
overlap_path = "/DISK/qwt/datasets/Ours_train_0_01/overlap"
data_arg.add_argument('--overlap_path', type=str, default=overlap_path)
# image setting
data_arg.add_argument('--image_W', type=str, default=160)
data_arg.add_argument('--image_H', type=str, default=120)
kitti_path = "/DISK/qwt/datasets/kitti/data_odometry_velodyne"
data_arg.add_argument('--kitti_root', type=str, default=kitti_path)
data_arg.add_argument(
'--kitti_max_time_diff',
type=int,
default=3,
help='max time difference between pairs (non inclusive)')
data_arg.add_argument('--kitti_date', type=str, default='2020_09_30')
def get_config():
args = parser.parse_args()
return args