-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
594 lines (522 loc) · 16.8 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
# -*- coding: utf-8 -*-
# @Time : 2018/11/26 17:30
# @Author : xieyunshen
# @Email : [email protected]
# @File : util.py
# @Software: PyCharm
# @ModifyTime:
from numpy import *
import numpy as np
import time
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import pandas as pd
from sklearn import manifold
from mpl_toolkits.mplot3d import Axes3D
import random
from scipy import stats
# 计算矩阵的欧式距离
def Euclidean_distance(X1,X2):
C = X1-X2
C2 = multiply(C,C)
D=sqrt(sum(C2[:]))
return D
# 计算矩阵的欧式距离方法二
def matrix_distance1(X1,X2):
C = X1 - X2
# print(C)
D = dot(C,C)
E = trace(D)
return E**0.5
# 欧氏距离的平方
def matrix_distance2(X1,X2):
C = X1 - X2
D = np.linalg.norm(C, ord=2)
return D**2
# 生成热力图
def generate_heatmap(M,title):
# cmap = sns.color_palette(flatui)
# cmap = sns.light_palette("black", reverse=True, n_colors=8)
f, ax = plt.subplots(figsize=(10, 10))
sns.heatmap(M,cbar=False,xticklabels=False,yticklabels=False)
ax.set_title(title)
f.savefig('./'+title+'.png')
# plt.show()
# 生成CCM矩阵
def generate_CCM(part):
'''
construct m cluster aggregation matrix Mi
:param part: 即partition
:return: 返回嵌套列表形式的矩阵
'''
n = len(part)
# print('len(part)',n)
M = np.zeros((n,n),dtype=float)
for i in range(n):
for j in range(n):
if part[i]==part[j]:
M[i][j]=1.0
else:
M[i][j] = 0.00000001
return M
# Kmeans聚类后,返回标签。
def generate_cluster(cluster_data,n_clusters=2):
X = np.array(cluster_data)
kmeans = KMeans(n_clusters=n_clusters).fit(X)
return list(kmeans.labels_)
# 设定不同的K,根据K-means聚类生成partitions。
def generate_partitions(file,s,e):
cluster_data = get_data(file)
partitions = []
for i in range(s,e+1):
kmeans = generate_cluster(cluster_data,i)
partitions.append(kmeans)
return partitions
# 读取CSV文件
def get_data(file):
'''
:param file:获取数据集中的实例的特征向量
:return: 返回嵌套列表,每一个子列表代表一个实例的特征向量
'''
data = pd.read_csv(file, delimiter=',',encoding='utf-8',header=0).round(6)
title = list(data.ix[:0])
# for cell in title:
# print(cell)
# print(len(title))
cluster_data = []
for i in range(len(title)-1):
cluster_data.append(list(data.ix[:,title[i]]))
# print(list(data.ix[:,title[i]]))
return cluster_data
# KL散度的计算
def KLDivergence(X1,X2):
I = len(X1)
J = len(X2)
sum_ = 0.0
for i in range(I):
for j in range(J):
ll = X1[i][j]/X2[i][j]
# try:
# ll = X1[i][j]/X2[i][j]
# except ZeroDivisionError:
# ll = X1[i][j]/0.000001
try:
sum_ += X1[i][j] * log(ll) - X1[i][j] + X2[i][j]
except RuntimeWarning:
sum_ += X2[i][j] - X1[i][j]
return sum_
def KLdivergence_new(X,Y):
arr_X = np.array(X).flatten()
arr_Y = np.array(Y).flatten()
vector_x = arr_X/np.max(arr_X)
vector_y = arr_Y/np.max(arr_Y)
distance = stats.entropy(vector_x,vector_y)
print('KLdivergence:',distance)
return distance
# 指数距离的计算
def expDistance(X1,X2):
distance = np.exp(X1) - np.exp(X2) - (X1-X2)*np.exp(X2)
r = np.linalg.norm(distance, ord=2)
return r
# 指数距离的计算
def expDistance_new(X,Y):
vector_x = np.array(X).flatten()
vector_y = np.array(Y).flatten()
distance = np.exp(vector_x) - np.exp(vector_y) - (vector_x-vector_y)*np.exp(vector_y)
r = math.log(np.linalg.norm(distance, ord=2))
print('ExpDistance:',r)
return r
# 场向量
def Fieldervector(M):
# D_list = []
m = len(M)
# print(M.sum(axis=1))
D_ = map(sum,M)
D = matrix(np.diag(list(D_)))
# print(D)
D1 = np.sqrt(D).I
# print(D1)
I = np.eye(m)
L = I - D1*M*D1
# print(L)
eigenvalue,eigenvector = np.linalg.eig(L)
# print(eigenvalue)
# print(eigenvector)
s = second_min(eigenvalue)
# print(s)
result = eigenvector[:,s].tolist()
# print(result)
# result = eigenvector.T.tolist()[s]
# print(result.shape())
return result
# 生成Eigenvector图像
def Eigenvector_image(x_y,title):
# print(len(x_y))
plt.figure()
x = list(range(0, len(x_y)))
y = x_y
plt.scatter(x, y, label="Eigenvector",s=1)
plt.title(title)
plt.legend()
plt.savefig(title+'.png')
# plt.show()
# 获取列表中倒数第二的元素序号,这里如果最小的几个特征值为0,则次小的特征值应该为大于零的最小数
def second_min(lt):
d = {}
for i,v in enumerate(lt):
d[v] = i
# print(lt)
index = list(set(lt))
index.sort()
y = index[1]
return d[y]
# 获取文件的标签
def get_class_label(file):
data = pd.read_csv(file, delimiter=',', encoding='utf-8', header=0)
# print(list(data['Death']))
labels = list(data['Death'])
return labels
# 原始数据降维后可视化
def data_visualization_2D(cluster_data, class_labels,title):
# class_labels = get_class_label(labelfile)
# 源数据可视化
# cluster_data = get_data(file)
n_components = 2
X = np.array(cluster_data)
tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0)
# tsne = manifold.TSNE(n_components=n_components, init='pca')
Y = tsne.fit_transform(X) # 转换后的输出
fig = plt.figure()
axes = fig.add_subplot(111)
for i in range(len(cluster_data)):
if class_labels[i] == 0:
axes.scatter(Y[i, 0], Y[i, 1], color='red')
if class_labels[i] == 1:
axes.scatter(Y[i, 0], Y[i, 1], color='green')
# plt.show()
fig.savefig(title+'.png')
def data_visualization(cluster_data,cluster_label,title):
fig = plt.figure()
axes = fig.add_subplot(111)
for i in range(len(cluster_data)):
if cluster_label[i] == 0:
axes.scatter(cluster_data[i,0],cluster_data[i,1],color='red')
if cluster_label[i] == 1:
axes.scatter(cluster_data[i,0],cluster_data[i,1],color='green')
fig.savefig(title+'.png')
# 原始数据降维后(三维)可视化
def data_visualization_3D(file, labelfile):
class_labels = get_class_label(labelfile)
cluster_data = get_data(file)
X = np.array(cluster_data)
tsne = manifold.TSNE(n_components=3,init='pca',random_state=0)
Y = tsne.fit_transform(X)
fig = plt.figure(figsize=(8,8))
axes = fig.add_subplot(211,projection='3d')
for i in range(len(cluster_data)):
if class_labels[i] == 0:
axes.scatter(Y[i, 0], Y[i, 1], Y[i, 2], color='red')
if class_labels[i] == 1:
axes.scatter(Y[i, 0], Y[i, 1], Y[i, 2], color='green')
axes.view_init(4, -72) # 初始化视角
plt.show()
# 生成聚类结果的2D图
def cluster_visualization_2D(clusterdata,clusterlabels,title):
"""
:param clusterdata:数据点
:param clusterlabels: 聚类结果标签
:return:
"""
X = np.array(clusterdata)
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
Y = tsne.fit_transform(X)
fig = plt.figure()
axes = fig.add_subplot(111)
for i in range(len(clusterdata)):
if clusterlabels[i] == 0:
axes.scatter(Y[i, 0], Y[i, 1], color='red')
if clusterlabels[i] == 1:
axes.scatter(Y[i, 0], Y[i, 1], color='green')
plt.savefig(title+'.png')
plt.show()
# plt.savefig(str(int(time.time())) + 'cluster_visualization_2D.png')
# 生成聚类结果的3D图
def cluster_visualization_3D(clusterdata,clusterlabels):
X = np.array(clusterdata)
tsne = manifold.TSNE(n_components=3, init='pca', random_state=0)
Y = tsne.fit_transform(X)
fig = plt.figure(figsize=(8, 8))
axes = fig.add_subplot(211, projection='3d')
for i in range(len(clusterdata)):
if clusterlabels[i] == 0:
axes.scatter(Y[i, 0], Y[i, 1], Y[i, 2], color='red')
if clusterlabels[i] == 1:
axes.scatter(Y[i, 0], Y[i, 1], Y[i, 2], color='green')
axes.view_init(4, -72) # 初始化视角
plt.show()
# 随机生成times次聚类结果,簇数随机选择
def C_Kmeans(cluster_data,times):
result = []
while times:
# k = random.randint(2, 50)
k = 2
labels = generate_cluster(cluster_data, k)
result.append(labels)
times -= 1
return result
# 计算准确率,仅适用于二分类
def Accuracy_binary(class_labels,result):
N = len(class_labels)
same = 0
different = 0
for i in range(N):
if class_labels[i] == result[i]:
same += 1
else:
different += 1
acc = max(same, different) / N
return acc
# 计算准确率,仅适用于二分类
def Accuracy_binary_1(class_labels,result):
index_ = list(set(class_labels))
result_index = list(set(result))
N = len(class_labels)
class_label = np.array(class_labels)
label = np.array(result)
# print(np.where(class_label==1)[0].tolist())
class_0 = set(np.where(class_label==index_[0])[0].tolist())
class_1 = set(np.where(class_label==index_[1])[0].tolist())
if len(result_index) == 1:
result_0 = set(np.where(label==result_index[0])[0].tolist())
num1 = len(class_0.intersection(result_0))
num2 = len(class_1.intersection(result_0))
acc = max(num1,num2)/N
return acc
# print('class_0:',class_0)
# print('class_1:',class_1)
result_0 = set(np.where(label==result_index[0])[0].tolist())
# print('result0',result_0)
result_1 = set(np.where(label==result_index[1])[0].tolist())
# print('result_1',result_1)
num1 = len(class_0.intersection(result_0))+len(class_1.intersection(result_1))
num2 = len(class_0.intersection(result_1)) + len(class_1.intersection(result_0))
acc = max(num1,num2)/N
# l1 = set(np.where(class_label==1)[0].tolist()).intersection(np.where(label==1)[0].tolist())
# l2 = set(np.where(class_label==0)[0].tolist()).intersection(np.where(label==0)[0].tolist())
# l3 = set(np.where(class_label==0)[0].tolist()).intersection(np.where(label==1)[0].tolist())
# l4 = set(np.where(class_label==1)[0].tolist()).intersection(np.where(label==0)[0].tolist())
# num = max(len(l1.union(l2)),len(l3.union(l4)))
# acc = float(num)/N
return acc
def Accuracy_multi_class(class_labels,result):
label_set = set(class_labels)
label_array = np.array(class_labels)
result_set = set(result)
result_array = np.array(result)
contrast_class_list = []
for cell in label_set:
r = np.where(label_array==cell)
contrast_class_list.append(set(r[0]))
contrast_result_list=[]
for cell in result_set:
r = np.where(result_array==cell)
contrast_result_list.append(set(r[0]))
print(contrast_class_list)
print(contrast_result_list)
max_num = 0.
exist_list = []
for la in contrast_class_list:
num = 0
x = {}
for re in contrast_result_list:
if len(la.intersection(re)) > num and re not in exist_list:
num = len(la.intersection(re))
x = re
exist_list.append(x)
max_num += num
acc = max_num/len(class_labels)
return acc
# 获取共识聚类结果的标签
def Clustering_result(M):
# 因为结果是二分类,所以创建两个集合,存储样本的序号
l1 = []
for i in range(len(M)):
l1.append(M[:,i])
X = np.array(l1)
kmeans = KMeans(n_clusters=2).fit(X)
return list(kmeans.labels_)
# 生成M和C集合,M为must-link约束,C为cannot-link约束
def generate_M_C_old(file, constrains_nums):
data = pd.read_csv(file,delimiter=',',encoding='utf-8',header=0)
# print(list(data['Death']))
labels = list(data['Death'])
n = len(labels)
# 随机生成20个随机数
M = []
C = []
# nums = set(np.random.randint(0, n, constrains_nums))
import random
nums = random.sample(range(0, n), constrains_nums)
# print(nums)
for i in nums:
for j in nums:
if i!=j:
if labels[i]==labels[j]:
M.append([i,j])
else:
C.append([i,j])
return M,C
# 生成M和C集合
def generate_M_C_new(file,condition_num):
'''
:param file:标签文件
:param condition_num:设置的条件的数量
:return:
'''
data = pd.read_csv(file,delimiter=',',encoding='utf-8',header=0)
labels = list(data['Death'])
# 随机生成20个随机数
M = []
C = []
n = len(labels)
while condition_num:
randnum = random.sample(range(0,n),2)
randnum.sort()
# print(randnum)
if randnum not in M and randnum not in C:
if labels[randnum[0]] == labels[randnum[1]]:
M.append(randnum)
else:
C.append(randnum)
condition_num -= 1
return M,C
# # 定义函数Normalized Mutual Information(NMI)作为实验结果评测值
# def NMI(labels_A,labels_B):
# n = len(labels_A)
# Ck = set(labels_A)
# Cm = set(labels_B)
# # NMI计算中分子的值
# sum_factor0 = 0.
# for k in Ck:
# for m in Cm:
# indexs_k = getindex(k,labels_A)
# indexs_m = getindex(m,labels_B)
# nk = len(indexs_k)
# nm = len(indexs_m)
# n_km = len(indexs_k.intersection(indexs_m))
# factor0 = n*n_km/(nk*nm)
# element = math.log(factor0)
# sum_factor0 += element
# # 分母中第一个元素
# denominator_0 = 0.
# for k in Ck:
# indexs_k = getindex(k,labels_A)
# nk = len(indexs_k)
# denominator_0 += nk*math.log(nk/n)
# # 分母中第二个元素
# denominator_1 = 0.
# for m in Cm:
# indexs_m = getindex(m,labels_B)
# nm = len(indexs_m)
# denominator_1 += nm*math.log(nm/n)
#
# result = sum_factor0/math.sqrt(denominator_0*denominator_1)
# return result
def getindex(k,labels):
result = set()
n = len(labels)
for i in range(n):
if labels[i] == k:
result.add(i)
return result
# 根据txt文件,生成权重变化趋势图
def show_weight_trends(file,title):
data = np.loadtxt(file, delimiter=',')
n = data.shape[1]
m = data.shape[0]
x = list(range(0, n))
plt.style.use('fivethirtyeight')
fig, ax = plt.subplots()
plt.ylim(-0.1,1)
for i in range(m):
ax.plot(x, data[i, :], label=str(i), linewidth=1)
# plt.legend()
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.title(title)
plt.savefig(title+'.png')
def generate_CCM_list(partitions):
'''
construct m cluster aggregation matrix Mi
:param part: 即partition
:return: 返回嵌套列表形式的矩阵
'''
M_list = []
for part in partitions:
n = len(part)
# print(n)
M = np.zeros((n, n), dtype=float)
for i in range(n):
for j in range(n):
if part[i] == part[j]:
M[i][j] = 1.0
else:
M[i][j] = 0.00000001
M_list.append(M)
return M_list
if __name__ == '__main__':
x = np.array([1,2,3])
y = np.array([4,5,6])
r = expDistance1(x,y)
print(r)
r2 = expDistance(x,y)
print(r2)
r3 = KLdivergence_new(x,y)
print(r3)
r4 = Euclidean_distance(x,y)
print(r4)
r5 = np.linalg.norm(x-y)
print(r5)
# M = [[1,1,0,0],[1,1,0,0],[0,0,1,1],[0,0,1,1]]
# result = Fieldervector(M)
# Eigenvector_image(result,'111')
exit()
# f1 = '../data/GBM/Gene.csv'
# f2 = '../data/GBM/Survival.csv'
# # data_visualization_3D(f1,f2)
# data = array(get_data(f1))
# # print(array(data).shape)
# print('data_shape',data.shape)
# cc = np.take(data,indices=[1,2],axis=0)
# print(cc[0,:])
# print(cc.shape[0])
# for cell in data:
# print(cell)
# print(data)
# l1 = [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3]
# l2 = [0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1]
l1 = [1,1,1,1]
l2 = [1,1,0,0]
r = Accuracy_binary_1(l1,l2)
r1 = Accuracy_binary(l1,l2)
print(r)
print(r1)
exit()
# # print(r)
# from sklearn.metrics import normalized_mutual_info_score as nmi
# r = nmi(l1,l2)
# r1 = nmi(l2,l1)
# print(r)
# print(r1)
# filename0 = '../data/Kidney/Methy.csv'
# filename1 = '../data/Kidney/Mirna.csv'
# filename2 = '../data/Kidney/Gene.csv'
filename0 = '../data/Lung/Methy.csv'
filename1 = '../data/Lung/Mirna.csv'
filename2 = '../data/Lung/Gene.csv'
data0 = array(get_data(filename0))
data1 = array(get_data(filename1))
data2 = array(get_data(filename2))
print(data0.shape)
print(data1.shape)
print(data2.shape)