This is a clean and robust Pytorch implementation of Soft-Actor-Critic on discrete action space
![]() |
![]() |
---|
All the experiments are trained with same hyperparameters. Other RL algorithms by Pytorch can be found here.
gymnasium==0.29.1
numpy==1.26.1
pytorch==2.1.0
python==3.11.5
python main.py
where the default enviroment is 'CartPole'.
python main.py --EnvIdex 0 --render True --Loadmodel True --ModelIdex 50
which will render the 'CartPole'.
If you want to train on different enviroments
python main.py --EnvIdex 1
The --EnvIdex can be set to be 0 and 1, where
'--EnvIdex 0' for 'CartPole-v1'
'--EnvIdex 1' for 'LunarLander-v2'
Note: if you want train on LunarLander-v2, you need to install box2d-py first. You can install box2d-py via:
pip install gymnasium[box2d]
You can use the tensorboard to record anv visualize the training curve.
- Installation (please make sure Pytorch is installed already):
pip install tensorboard
pip install packaging
- Record (the training curves will be saved at '\runs'):
python main.py --write True
- Visualization:
tensorboard --logdir runs
For more details of Hyperparameter Setting, please check 'main.py'
Christodoulou P. Soft actor-critic for discrete action settings[J]. arXiv preprint arXiv:1910.07207, 2019.
Haarnoja T, Zhou A, Abbeel P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//International conference on machine learning. PMLR, 2018: 1861-1870.
Haarnoja T, Zhou A, Hartikainen K, et al. Soft actor-critic algorithms and applications[J]. arXiv preprint arXiv:1812.05905, 2018.