-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
119 lines (101 loc) · 4.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from utils import evaluate_policy, str2bool
from datetime import datetime
from SACD import SACD_agent
import gymnasium as gym
import os, shutil
import argparse
import torch
'''Hyperparameter Setting'''
parser = argparse.ArgumentParser()
parser.add_argument('--dvc', type=str, default='cuda', help='running device: cuda or cpu')
parser.add_argument('--EnvIdex', type=int, default=0, help='CP-v1, LLd-v2')
parser.add_argument('--write', type=str2bool, default=False, help='Use SummaryWriter to record the training')
parser.add_argument('--render', type=str2bool, default=False, help='Render or Not')
parser.add_argument('--Loadmodel', type=str2bool, default=False, help='Load pretrained model or Not')
parser.add_argument('--ModelIdex', type=int, default=50, help='which model to load')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--Max_train_steps', type=int, default=4e5, help='Max training steps')
parser.add_argument('--save_interval', type=int, default=1e5, help='Model saving interval, in steps.')
parser.add_argument('--eval_interval', type=int, default=2e3, help='Model evaluating interval, in steps.')
parser.add_argument('--random_steps', type=int, default=1e4, help='steps for random policy to explore')
parser.add_argument('--update_every', type=int, default=50, help='training frequency')
parser.add_argument('--gamma', type=float, default=0.99, help='Discounted Factor')
parser.add_argument('--hid_shape', type=list, default=[200,200], help='Hidden net shape')
parser.add_argument('--lr', type=float, default=3e-4, help='Learning rate')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--alpha', type=float, default=0.2, help='init alpha')
parser.add_argument('--adaptive_alpha', type=str2bool, default=True, help='Use adaptive alpha turning')
opt = parser.parse_args()
print(opt)
def main():
#Create Env
EnvName = ['CartPole-v1', 'LunarLander-v2']
BriefEnvName = ['CPV1', 'LLdV2']
env = gym.make(EnvName[opt.EnvIdex], render_mode="human" if opt.render else None)
eval_env = gym.make(EnvName[opt.EnvIdex])
opt.state_dim = env.observation_space.shape[0]
opt.action_dim = env.action_space.n
opt.max_e_steps = env._max_episode_steps
# Seed Everything
env_seed = opt.seed
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
print("Random Seed: {}".format(opt.seed))
print('Algorithm: SACD',' Env:',BriefEnvName[opt.EnvIdex],' state_dim:',opt.state_dim,
' action_dim:',opt.action_dim,' Random Seed:',opt.seed, ' max_e_steps:',opt.max_e_steps, '\n')
if opt.write:
from torch.utils.tensorboard import SummaryWriter
timenow = str(datetime.now())[0:-10]
timenow = ' ' + timenow[0:13] + '_' + timenow[-2::]
writepath = 'runs/SACD_{}'.format(BriefEnvName[opt.EnvIdex]) + timenow
if os.path.exists(writepath): shutil.rmtree(writepath)
writer = SummaryWriter(log_dir=writepath)
#Build model
if not os.path.exists('model'): os.mkdir('model')
agent = SACD_agent(**vars(opt))
if opt.Loadmodel: agent.load(opt.ModelIdex, BriefEnvName[opt.EnvIdex])
if opt.render:
while True:
score = evaluate_policy(env, agent, 1)
print('EnvName:', BriefEnvName[opt.EnvIdex], 'seed:', opt.seed, 'score:', score)
else:
total_steps = 0
while total_steps < opt.Max_train_steps:
s, info = env.reset(seed=env_seed) # Do not use opt.seed directly, or it can overfit to opt.seed
env_seed += 1
done = False
'''Interact & trian'''
while not done:
#e-greedy exploration
if total_steps < opt.random_steps: a = env.action_space.sample()
else: a = agent.select_action(s, deterministic=False)
s_next, r, dw, tr, info = env.step(a) # dw: dead&win; tr: truncated
done = (dw or tr)
if opt.EnvIdex == 1:
if r <= -100: r = -10 # good for LunarLander
agent.replay_buffer.add(s, a, r, s_next, dw)
s = s_next
'''update if its time'''
# train 50 times every 50 steps rather than 1 training per step. Better!
if total_steps >= opt.random_steps and total_steps % opt.update_every == 0:
for j in range(opt.update_every):
agent.train()
'''record & log'''
if total_steps % opt.eval_interval == 0:
score = evaluate_policy(eval_env, agent, turns=3)
if opt.write:
writer.add_scalar('ep_r', score, global_step=total_steps)
writer.add_scalar('alpha', agent.alpha, global_step=total_steps)
writer.add_scalar('H_mean', agent.H_mean, global_step=total_steps)
print('EnvName:', BriefEnvName[opt.EnvIdex], 'seed:', opt.seed,
'steps: {}k'.format(int(total_steps / 1000)), 'score:', int(score))
total_steps += 1
'''save model'''
if total_steps % opt.save_interval == 0:
agent.save(int(total_steps/1000), BriefEnvName[opt.EnvIdex])
env.close()
eval_env.close()
if __name__ == '__main__':
main()