-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_multi_GPU.py
413 lines (347 loc) · 18.5 KB
/
main_multi_GPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from __future__ import absolute_import, division, print_function, unicode_literals
import sys
import os
import matplotlib.pyplot as plt
import time
import warnings
import tensorflow as tf
import argparse
import numpy as np
import scipy.io as sio
from utils import AverageMeter, plot_curve, Logger
from trainingFromScratch.imagenet.imagenet_dataset import *
from trainingFromScratch.cifar100.cifar_dataset import *
from src.network import *
from src.representation import *
from model_init import *
from finetune.fine_grained_benchmark.datasets import *
parser = argparse.ArgumentParser(description='TensorFlow MPNCOV Training')
parser.add_argument('dataset', metavar='DIR',
help='path to dataset')
parser.add_argument('--benchmark', type=str, default=None,
help='path to dataset')
parser.add_argument('--num-classes', default=None, type=int,
help='image class number')
parser.add_argument('--train-num', default=None, type=int,
help='image class number')
parser.add_argument('--val-num', default=None, type=int,
help='image class number')
parser.add_argument('--arch', '-a', metavar='ARCH', default='mpncovresnet50',
help='model architecture: ')
parser.add_argument('--representation', default=None, type=str,
help='define the representation method:{GAvP, MPNCOV, BCNN, CBP}')
parser.add_argument('--freezed-layer', default=None, type=int,
help='freeze layer')
parser.add_argument('--pretrained', dest='pretrained', action='store_true', default=True,
help='whether use pre-trained model')
parser.add_argument('--model-path', metavar='DIR', default=None,
help='path to weights of pretrained model')
parser.add_argument('--epochs', default=None, type=int, metavar='N',
help='number of total epoches to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--batchSize', '-b', default=None, type=int, metavar='N',
help='mini-batch size(default: 64)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum(default:0.9)')
parser.add_argument('--weight-decay', '-wd', default=1e-4, type=float, metavar='W',
help='weight decay(default: 1e-4)')
parser.add_argument('--learning-rate', '-lr', default=None, type=float, metavar='LR',
help='initial learning rate')
parser.add_argument('--learning-rate-schedule', nargs='+', type=int, default=[],
help='Schedule of learning rate decay')
parser.add_argument('--learning-rate-multiplier', nargs='+', type=float, default=[],
help='Schedule of learning rate decay')
parser.add_argument('--WarmingUp', action='store_true',
help='whether use warming up')
parser.add_argument('--fc-factor', default=None, type=int, metavar='N',
help='define the multiply factor of classifier')
parser.add_argument('--seed', default=None, type=int,
help='seed for innitializing training')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--print-freq', default=10, type=int, metavar='N',
help='number of first stage epoches to run')
parser.add_argument('--exp-dir', metavar='DIR', default='./training_checkpoints',
help='path to experiment result')
parser.add_argument('--workers', '-j', default=8, type=int, metavar='N',
help='number of data loading workers(default:4)')
class Train(object):
"""Train class.
Args:
epochs: Number of epochs
enable_function: If True, wraps the train_step and test_step in tf.function
model: Densenet model.
batch_size: Batch size.
strategy: Distribution strategy in use.
"""
def __init__(self, epochs, enable_function, model, batch_size, strategy):
self.epochs = epochs
self.batch_size = batch_size
self.batch_time = AverageMeter()
self.enable_function = enable_function
self.strategy = strategy
self.loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE)
self.train_top1_metric = tf.keras.metrics.SparseCategoricalAccuracy(
name='train_accuracy')
self.train_top5_metric = tf.keras.metrics.SparseTopKCategoricalAccuracy(
k=5, name='train_top5_accuracy')
self.val_top1_metric = tf.keras.metrics.SparseCategoricalAccuracy(
name='test_accuracy')
self.val_top5_metric = tf.keras.metrics.SparseTopKCategoricalAccuracy(
k=5, name='test_top5_accuracy')
self.model = model
def decay(self, epoch):
staged_lr = [args.learning_rate * x for x in args.learning_rate_multiplier]
if args.WarmingUp:
decay_rate = (args.learning_rate * epoch / args.learning_rate_schedule[0])
else:
decay_rate = args.learning_rate
for st_lr, start_epoch in zip(staged_lr, args.learning_rate_schedule):
decay_rate = tf.where(epoch < start_epoch, decay_rate, st_lr)
return decay_rate
def compute_loss(self, label, predictions):
predictions = - tf.nn.log_softmax(predictions)
one_hot_labels = tf.one_hot(label, args.num_classes)
per_sample_loss = tf.reduce_sum(one_hot_labels * predictions, axis=1)
# compute cross_entropy loss
loss = tf.reduce_sum(per_sample_loss) * (1. / self.batch_size)
# compute regularization loss
if args.arch.startswith('vgg') and \
(args.representation == 'BCNN' or args.representation == 'CBP'):
reg_loss = [tf.nn.l2_loss(v) for v in self.model.trainable_variables if 'classifier' not in v.name]
if len(reg_loss):
reg_loss = args.weight_decay * tf.add_n(reg_loss)/self.strategy.num_replicas_in_sync
else:
reg_loss = 0
else:
reg_loss = args.weight_decay * tf.add_n([tf.nn.l2_loss(v)for v in self.model.trainable_variables]) \
/ self.strategy.num_replicas_in_sync
loss += reg_loss
return loss, reg_loss
def train_step(self, inputs, optimizer):
"""One train step.
Args:
inputs: one batch input.
Returns:
loss: Scaled loss.
"""
image, label = inputs
with tf.GradientTape() as tape:
predictions = self.model(image, training=True)
loss, reg_loss = self.compute_loss(label, predictions)
gradients = tape.gradient(loss, self.model.trainable_variables)
# set different learningRate for FC layer
if args.fc_factor is not None:
for l in range(len(gradients)-2, len(gradients)):
gradients[l] = gradients[l] * args.fc_factor
# update parameters
optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
self.train_top1_metric.update_state(label, predictions)
self.train_top5_metric.update_state(label, predictions)
return loss-reg_loss
def test_step(self, inputs):
"""One test step.
Args:
inputs: one batch input.
"""
image, label = inputs
if len(image.shape) > 4:
image = tf.reshape(image, [-1, *image.shape[2:]])
predictions = self.model(image, training=False)
if predictions.shape[0] != label.shape[0]:
s = predictions.shape[0] // label.shape[0]
predictions = tf.reshape(predictions, [label.shape[0], s, predictions.shape[1]])
predictions = tf.reduce_mean(predictions, axis=1)
loss, reg_loss = self.compute_loss(label, predictions)
self.val_top1_metric.update_state(label, predictions)
self.val_top5_metric.update_state(label, predictions)
return loss-reg_loss
def custom_loop(self, epoch, optimizer, train_dist_dataset, test_dist_dataset,
strategy):
"""Custom training and testing loop.
Args:
train_dist_dataset: Training dataset created using strategy.
test_dist_dataset: Testing dataset created using strategy.
strategy: Distribution strategy.
Returns:
train_loss, train_accuracy, test_loss, test_accuracy
"""
def distributed_train_step(dataset_inputs):
per_replica_losses = strategy.experimental_run_v2(self.train_step,
args=(dataset_inputs, optimizer,))
return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,
axis=None)
def distributed_test_step(dataset_inputs):
per_replica_losses = strategy.experimental_run_v2(self.test_step, args=(dataset_inputs,))
return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,
axis=None)
if self.enable_function:
distributed_train_step = tf.function(distributed_train_step)
distributed_test_step = tf.function(distributed_test_step)
self.train_top1_metric.reset_states()
self.train_top5_metric.reset_states()
self.val_top1_metric.reset_states()
self.val_top5_metric.reset_states()
self.batch_time.reset()
optimizer.learning_rate = self.decay(epoch)
print('learningRate: {:.4f}'.format(optimizer.learning_rate.numpy()))
train_total_loss = 0.0
num_train_batches = 0.0
for one_batch in train_dist_dataset:
end = time.time()
if args.WarmingUp:
if epoch < args.learning_rate_schedule[0]:
batch_learning_rate = self.decay(epoch) + float(num_train_batches / np.ceil(args.train_num/args.batchSize))\
* args.learning_rate / args.learning_rate_schedule[0]
optimizer.learning_rate = batch_learning_rate
# print('learningRate: {:.4f}'.format(optimizer.learning_rate.numpy()))
train_total_loss += distributed_train_step(one_batch)
num_train_batches += 1
self.batch_time.update(time.time() - end)
if num_train_batches % args.print_freq == 0:
print('learningRate: {:.4f}'.format(optimizer.learning_rate.numpy()))
template = ('Epoch: {}({}/{})\tTime:{:.4f}({:.4f})\tLoss: {:.4f}\tTop1_Accuracy: {:.4f}\tTop5_Accuracy: {:.4f}')
print(template.format(epoch+1, int(num_train_batches), int(np.ceil(args.train_num/args.batchSize)),
self.batch_time.val, self.batch_time.avg,
train_total_loss / num_train_batches,
100 * self.train_top1_metric.result(),
100 * self.train_top5_metric.result()))
self.batch_time.reset()
val_total_loss = 0.0
num_val_batches = 0.0
for one_batch in test_dist_dataset:
end = time.time()
val_total_loss += distributed_test_step(one_batch)
num_val_batches += 1
self.batch_time.update(time.time() - end)
if num_val_batches % args.print_freq == 0:
template = ('Val: {}({}/{})\tTime:{:.4f}({:.4f})\tLoss: {:.4f}\tTop1_Accuracy: {:.4f}\tTop5_Accuracy: {:.4f}')
print(template.format(epoch+1, int(num_val_batches), int(np.ceil(args.val_num/args.batchSize)),
self.batch_time.val, self.batch_time.avg,
val_total_loss / num_val_batches,
100 * self.val_top1_metric.result(),
100 * self.val_top5_metric.result()))
return (train_total_loss / num_train_batches,
100 * self.train_top1_metric.result().numpy(),
100 * self.train_top5_metric.result().numpy(),
val_total_loss / num_val_batches,
100 * self.val_top1_metric.result().numpy(),
100 * self.val_top5_metric.result().numpy())
def main():
global args, best_acc, best_epoch
args = parser.parse_args()
best_acc = 0.0
best_epoch = 0
# make director for store checkpoint files
if os.path.exists(args.exp_dir) is not True:
os.mkdir(args.exp_dir)
sys.stdout = Logger(os.path.join(args.exp_dir, 'logging.txt'))
print(args)
gpus = tf.config.experimental.list_logical_devices('GPU')
strategy = tf.distribute.MirroredStrategy([gpu.name for gpu in gpus])
# Save results for plotting
results = {'train': {'loss': [], 'top1': [], 'top5': []},
'val': {'loss': [], 'top1': [], 'top5': []}}
# optionally resume from a checkpoint
if args.start_epoch != 0:
if os.path.isfile(os.path.join(args.exp_dir, 'stats.mat')):
result = sio.loadmat(os.path.join(args.exp_dir, 'stats.mat'))
results['train']['loss'] = [] + np.ndarray.tolist(result['train_loss'][0][:args.start_epoch])
results['train']['top1'] = [] + np.ndarray.tolist(result['train_top1'][0][:args.start_epoch])
results['train']['top5'] = [] + np.ndarray.tolist(result['train_top5'][0][:args.start_epoch])
results['val']['loss'] = [] + np.ndarray.tolist(result['val_loss'][0][:args.start_epoch])
results['val']['top1'] = [] + np.ndarray.tolist(result['val_top1'][0][:args.start_epoch])
results['val']['top5'] = [] + np.ndarray.tolist(result['val_top5'][0][:args.start_epoch])
best_acc = max(results['val']['top1'])
best_epoch = np.where(np.asarray(results['val']['top1']) == best_acc)[0][0]+1
print('==============================================>BestEpoch:{}\tBest_acc:{:.4f}'.format(best_epoch, best_acc))
del result
if os.path.isfile(os.path.join(args.exp_dir, 'checkpoint')):
file_object = open(os.path.join(args.exp_dir, 'checkpoint'), mode='w')
all_the_text = 'model_checkpoint_path: "ckpt-{}"\n' \
'all_model_checkpoint_paths: "ckpt-{}"\n'.format(str(args.start_epoch), str(args.start_epoch))
file_object.write(all_the_text)
file_object.close()
if 'CUB' in args.benchmark:
dataset = CUB_dataset
elif 'Aircrafts' in args.benchmark:
dataset = Aircrafts_dataset
elif 'Cars' in args.benchmark:
dataset = Cars_dataset
elif 'imagenet' in args.benchmark:
dataset = ImageNetInput
elif 'cifar100' in args.benchmark:
dataset = CifarDataSet
else:
raise (RuntimeError('benchmark is not in {CUB, Cars, Aircrafts, imagenet}'))
i = args.start_epoch
epochs = args.epochs
with strategy.scope():
optimizer = tf.keras.optimizers.SGD(learning_rate=args.learning_rate, momentum=args.momentum)
# create model
if args.representation == 'GAvP':
representation = {'function': GAvP,
'input_dim': 2048}
elif args.representation == 'MPNCOV':
representation = {'function': MPNCOV,
'iterNum': 5,
'input_dim': 256,
'dimension_reduction': None,
'dropout_p': None}
elif args.representation == 'BCNN':
representation = {'function': BCNN,
'input_dim': 512}
elif args.representation == 'CBP':
representation = {'function': CompactBilinearLayer,
'input_dim': 512,
'proj_dim': 8192}
else:
warnings.warn('=> You did not choose a global image representation method!')
representation = None # which for original vgg or alexnet
model = get_model(args.arch,
representation,
args.num_classes,
args.freezed_layer,
pretrained=args.pretrained)
checkpoint_prefix = os.path.join(args.exp_dir, 'ckpt')
checkpoint = tf.train.Checkpoint(model=model)
if args.start_epoch != 0:
checkpoint.restore(tf.train.latest_checkpoint(args.exp_dir))
trainer = Train(epochs=epochs, enable_function=True, model=model, batch_size=args.batchSize, strategy=strategy)
val_ds = dataset(is_training=False, data_dir=args.dataset, pretrained=args.pretrained, arch=args.arch)\
.make_source_dataset(batchsize=args.batchSize)
val_ds = strategy.experimental_distribute_dataset(val_ds)
for epoch in range(i, epochs):
train_ds = dataset(is_training=True, data_dir=args.dataset, pretrained=args.pretrained, arch=args.arch)\
.make_source_dataset(batchsize=args.batchSize)
train_ds = strategy.experimental_distribute_dataset(train_ds)
train_loss, train_top1, train_top5, val_loss, val_top1, val_top5 = \
trainer.custom_loop(epoch, optimizer, train_ds, val_ds, strategy)
results['train']['loss'].append(train_loss)
results['train']['top1'].append(train_top1)
results['train']['top5'].append(train_top5)
results['val']['loss'].append(val_loss)
results['val']['top1'].append(val_top1)
results['val']['top5'].append(val_top5)
# remember best prec@1 and save checkpoint
checkpoint.save(file_prefix=checkpoint_prefix)
if best_acc < val_top1:
best_acc = val_top1
best_epoch = int(epoch+1)
sio.savemat(os.path.join(args.exp_dir, 'best_model.mat'),
{'epoch': best_epoch,
'params': model.get_weights()})
sio.savemat(os.path.join(args.exp_dir, 'stats.mat'),
{'train_loss': results['train']['loss'],
'train_top1': results['train']['top1'], 'train_top5': results['train']['top5'],
'val_loss': results['val']['loss'],
'val_top1': results['val']['top1'], 'val_top5': results['val']['top5']})
plot_curve(results, args.exp_dir, True)
print('Epoch: {}\tTrain Loss: {:.4f}\tTop1_Accuracy: {:.4f}\tTop5_Accuracy: {:.4f}\t'
'Val Loss: {:.4f}\tTop1_Accuracy: {:.4f}\t Top5_Accuracy: {:.4f}\n'
'==============================================>BestEpoch:{}\tBest_acc:{:.4f}'.format(
epoch+1, train_loss, train_top1, train_top5, val_loss, val_top1, val_top5, best_epoch, best_acc))
if __name__ == '__main__':
main()