-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun.py
107 lines (86 loc) · 3.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
from pre_import import *
import tensorflow as tf
import numpy as np
from anomaly_detection import AnomalyDetectionRunner
from utils import *
from tensorboardX import SummaryWriter
flags = tf.compat.v1.flags
FLAGS = flags.FLAGS
embed_dim=128
print("### embed_dim=", embed_dim)
flags.DEFINE_integer('discriminator_out', 0, 'discriminator_out.')
flags.DEFINE_float('discriminator_learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_integer('hidden1', embed_dim*2, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', embed_dim, 'Number of units in hidden layer 2.')
flags.DEFINE_float('weight_decay', 0., 'Weight for L2 loss on embedding matrix.')
flags.DEFINE_float('dropout', 0., 'Dropout rate (1 - keep probability).')
flags.DEFINE_integer('features', 1, 'Whether to use features (1) or not (0).')
flags.DEFINE_integer('seed', 1, 'seed for fixing the results.')
flags.DEFINE_integer('iterations', 100, 'number of iterations.')
flags.DEFINE_float('alpha', 0.7, 'balance parameter') # for attribute cost
flags.DEFINE_float('eta', 0, 'balance parameter') # for attribute
flags.DEFINE_float('theta', 0, 'balance parameter') # for structure
#flags.DEFINE_float('tt', 1.5, 'balance parameter')
seed = 7
np.random.seed(seed)
tf.compat.v1.set_random_seed(seed)
tt=1.5
# data_list = ['BlogCatalog', 'Flickr', 'ACM']
data_list = ['BlogCatalog']
# eta_list = np.arange(1, 10, 2).astype(np.int)
# theta_list = np.arange(1, 101, 10).astype(np.int)
# alpha_list = [0.7, 0.8, 0.9, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0]
alpha_list = [0.7]
# embed_dims = [8,16,32,64,128,256,512,1024]
model = 'Dominant' # 'Dominant' or 'AnomalyDAE'
task = 'anomaly_detection'
detection_method = 'lpa'
for dataset_str in data_list:
if dataset_str=='BlogCatalog':
# eta_list = [1,3,5]
eta_list = [5]
theta_list = [40]
decoder_act = [tf.nn.sigmoid, lambda x: x] # [structure_act, attribute_act]
FLAGS.iterations=100
elif dataset_str=='Flickr':
eta_list = [8]
theta_list = [90]
decoder_act = [tf.nn.sigmoid, lambda x: x]
FLAGS.iterations=100
elif dataset_str=='ACM':
eta_list = [3] # for attribute
theta_list = [10] # for structure
decoder_act = [tf.nn.sigmoid, lambda x: x]
# decoder_act = [lambda x: x, lambda x: x]
FLAGS.iterations=80
else:
print("[ERROR] no such dataset: {}".format(dataset_str))
continue
for eta in eta_list:
for theta in theta_list:
for alpha in alpha_list:
FLAGS.eta=eta
FLAGS.theta=theta
FLAGS.alpha=alpha
settings = {'data_name': dataset_str,
'iterations': FLAGS.iterations,
'model' : model,
'decoder_act': decoder_act,
'detection_method':detection_method,
'baln': tt}
results_dir = os.path.sep.join(['results', dataset_str, task, model])
log_dir = os.path.sep.join(['logs', dataset_str, task, model, '{}_{}_{}'.format(eta, theta, alpha)])
if not os.path.exists(results_dir):
os.makedirs(results_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
file2print = '{}/{}_{}_{}_{}_{}.json'.format(results_dir, dataset_str,
eta, theta, alpha, embed_dim)
runner = None
if task == 'anomaly_detection':
runner = AnomalyDetectionRunner(settings)
writer = SummaryWriter(log_dir)
runner.erun(writer)