-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_1.py
235 lines (186 loc) · 9.63 KB
/
main_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding: utf-8 -*-
import numpy as np
from sklearn.utils.random import sample_without_replacement
from sklearn.metrics import auc, precision_recall_curve, roc_curve
from sklearn.svm import OneClassSVM
import argparse
import load_data
import networkx as nx
from graph_autoencoder import *
import torch
import torch.nn as nn
import time
import graph_autoencoder
from loss import *
from util import *
from torch.autograd import Variable
from GraphBuild import GraphBuild
from numpy.random import seed
import random
import matplotlib.pyplot as plt
import copy
import torch.nn.functional as F
from sklearn.manifold import TSNE
from matplotlib import cm
from model import *
from random import shuffle
import math
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
def arg_parse():
parser = argparse.ArgumentParser(description='G-Anomaly Arguments.')
parser.add_argument('--datadir', dest='datadir', default ='dataset', help='Directory where benchmark is located')
parser.add_argument('--DS', dest='DS', default ='Tox21_HSE', help='dataset name')
parser.add_argument('--max-nodes', dest='max_nodes', type=int, default=0, help='Maximum number of nodes (ignore graghs with nodes exceeding the number.')
parser.add_argument('--clip', dest='clip', default=0.1, type=float, help='Gradient clipping.')
parser.add_argument('--num_epochs', dest='num_epochs', default=100, type=int, help='total epoch number')
parser.add_argument('--batch-size', dest='batch_size', default=2000, type=int, help='Batch size.')
parser.add_argument('--hidden-dim', dest='hidden_dim', default=256, type=int, help='Hidden dimension')
parser.add_argument('--output-dim', dest='output_dim', default=128, type=int, help='Output dimension')
parser.add_argument('--num-gc-layers', dest='num_gc_layers', default=2, type=int, help='Number of graph convolution layers before each pooling')
parser.add_argument('--nobn', dest='bn', action='store_const', const=False, default=True, help='Whether batch normalization is used')
parser.add_argument('--dropout', dest='dropout', default=0.1, type=float, help='Dropout rate.')
parser.add_argument('--lr', type=float, default=0.00001, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--nobias', dest='bias', action='store_const', const=False, default=True, help='Whether to add bias. Default to True.')
parser.add_argument('--feature', dest='feature', default='deg-num', help='use what node feature')
parser.add_argument('--seed', dest='seed', type=int, default=2, help='seed')
return parser.parse_args()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def gen_ran_output(h0, adj, model, vice_model):
for (adv_name,adv_param), (name,param) in zip(vice_model.named_parameters(), model.named_parameters()):
if name.split('.')[0] == 'proj_head':
adv_param.data = param.data
else:
adv_param.data = param.data + 1.0 * torch.normal(0,torch.ones_like(param.data)*param.data.std()).cuda()
x1_r,Feat_0= vice_model(h0, adj)
return x1_r,Feat_0
def train(dataset, data_test_loader, NetG, noise_NetG, args):
optimizerG = torch.optim.Adam(NetG.parameters(), lr=args.lr)
epochs=[]
auroc_final = 0
l_bce = nn.BCELoss()
#l_adv= l2_loss
l_enc = l2_loss
node_Feat=[]
graph_Feat=[]
max_AUC=0
for epoch in range(args.num_epochs):
total_time = 0
total_lossG = 0.0
NetG.train()
for batch_idx, data in enumerate(dataset):
begin_time = time.time()
adj = Variable(data['adj'].float(), requires_grad=False).cuda()
h0 = Variable(data['feats'].float(), requires_grad=False).cuda()
adj_label = Variable(data['adj_label'].float(), requires_grad=False).cuda()
x1_r,Feat_0 = NetG.shared_encoder(h0, adj)
x1_r_1 ,Feat_0_1= gen_ran_output(h0, adj, NetG.shared_encoder, noise_NetG)
x_fake,s_fake,x2,Feat_1=NetG(x1_r,adj)
err_g_con_s, err_g_con_x = loss_func(adj_label, s_fake, h0, x_fake)
node_loss=torch.mean(F.mse_loss(x1_r, x2, reduction='none'), dim=2).mean(dim=1).mean(dim=0)
graph_loss = F.mse_loss(Feat_0, Feat_1, reduction='none').mean(dim=1).mean(dim=0)
#err_g_enc=l_enc(Feat_0, Feat_1)
err_g_enc=loss_cal(Feat_0_1, Feat_0)
lossG = err_g_con_s + err_g_con_x + graph_loss +node_loss+err_g_enc
optimizerG.zero_grad()
lossG.backward()
optimizerG.step()
total_lossG += lossG
elapsed = time.time() - begin_time
total_time += elapsed
if (epoch+1)%10 == 0 and epoch > 0:
epochs.append(epoch)
NetG.eval()
loss = []
y=[]
for batch_idx, data in enumerate(data_test_loader):
adj = Variable(data['adj'].float(), requires_grad=False).cuda()
h0 = Variable(data['feats'].float(), requires_grad=False).cuda()
x1_r,Feat_0 = NetG.shared_encoder(h0, adj)
x_fake,s_fake,x2,Feat_1=NetG(x1_r,adj)
loss_node=torch.mean(F.mse_loss(x1_r, x2, reduction='none'), dim=2).mean(dim=1).mean(dim=0)
loss_graph = F.mse_loss(Feat_0, Feat_1, reduction='none').mean(dim=1)
loss_=loss_node+loss_graph
loss_ = np.array(loss_.cpu().detach())
loss.append(loss_)
if data['label'] == 0:
y.append(1)
else:
y.append(0)
label_test = []
for loss_ in loss:
label_test.append(loss_)
label_test = np.array(label_test)
fpr_ab, tpr_ab, _ = roc_curve(y, label_test)
test_roc_ab = auc(fpr_ab, tpr_ab)
print('semi-supervised abnormal detection: auroc_ab: {}'.format(test_roc_ab))
if test_roc_ab>auroc_final:
auroc_final=test_roc_ab
max_AUC= auroc_final
#if epoch == (args.num_epochs-1):
#auroc_final = test_roc_ab
print(max_AUC)
if __name__ == '__main__':
args = arg_parse()
DS = args.DS
setup_seed(args.seed)
graphs_train_ = load_data.read_graphfile(args.datadir, args.DS+'_training', max_nodes=args.max_nodes)
graphs_test = load_data.read_graphfile(args.datadir, args.DS+'_testing', max_nodes=args.max_nodes)
datanum = len(graphs_train_) + len(graphs_test)
if args.max_nodes == 0:
max_nodes_num_train = max([G.number_of_nodes() for G in graphs_train_])
max_nodes_num_test = max([G.number_of_nodes() for G in graphs_test])
max_nodes_num = max([max_nodes_num_train, max_nodes_num_test])
else:
max_nodes_num = args.max_nodes
print(datanum)
train_num=len(graphs_train_)
all_idx = [idx for idx in range(train_num)]
shuffle(all_idx)
num_train=math.ceil(1*train_num)
train_index = all_idx[:num_train]
graphs_train_1 = [graphs_train_[i] for i in train_index]
graphs_train = []
for graph in graphs_train_1:
if graph.graph['label'] == 0:
graphs_train.append(graph)
for graph in graphs_train:
graph.graph['label'] = 0
graphs_test_nor = []
graphs_test_ab = []
for graph in graphs_test:
if graph.graph['label'] == 0:
graphs_test_nor.append(graph)
else:
graphs_test_ab.append(graph)
for graph in graphs_test_nor:
graph.graph['label'] = 0
for graph in graphs_test_ab:
graph.graph['label'] = 1
graphs_test_nor.append(graph)
graphs_test = graphs_test_nor
num_train = len(graphs_train)
num_test = len(graphs_test)
print(num_train, num_test)
dataset_sampler_train = GraphBuild(graphs_train, features=args.feature, normalize=False, max_num_nodes=max_nodes_num)
NetG= NetGe1(dataset_sampler_train.feat_dim, args.hidden_dim, args.output_dim, 2,
args.num_gc_layers, bn=args.bn, args=args).cuda()
noise_NetG= Encoder1(dataset_sampler_train.feat_dim, args.hidden_dim, args.output_dim, 2,
args.num_gc_layers, bn=args.bn, args=args).cuda()
#NetG= NetGe(dataset_sampler_train.feat_dim,args.hidden_dim, args.output_dim,args.dropout,args.batch_size).cuda()
#noise_NetG= Encoder(dataset_sampler_train.feat_dim,args.hidden_dim, args.output_dim,args.dropout,args.batch_size).cuda()
data_train_loader = torch.utils.data.DataLoader(dataset_sampler_train,
shuffle=True,
batch_size=args.batch_size)
dataset_sampler_test = GraphBuild(graphs_test, features=args.feature, normalize=False, max_num_nodes=max_nodes_num)
data_test_loader = torch.utils.data.DataLoader(dataset_sampler_test,
shuffle=False,
batch_size=1)
#train(data_train_loader, data_test_loader, model_teacher, model_student, args)
result = train(data_train_loader, data_test_loader, NetG, noise_NetG,args)