-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathloss.py
39 lines (33 loc) · 1.25 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from pdb import set_trace as brk
class ChamferLoss(nn.Module):
def __init__(self):
super(ChamferLoss, self).__init__()
self.use_cuda = torch.cuda.is_available()
def forward(self, preds, gts):
P = self.batch_pairwise_dist(gts, preds)
mins, _ = torch.min(P, 1)
loss_1 = torch.sum(mins)
mins, _ = torch.min(P, 2)
loss_2 = torch.sum(mins)
return loss_1 + loss_2
def batch_pairwise_dist(self, x, y):
bs, num_points_x, points_dim = x.size()
_, num_points_y, _ = y.size()
xx = torch.bmm(x, x.transpose(2, 1))
yy = torch.bmm(y, y.transpose(2, 1))
zz = torch.bmm(x, y.transpose(2, 1))
if self.use_cuda:
dtype = torch.cuda.LongTensor
else:
dtype = torch.LongTensor
diag_ind_x = torch.arange(0, num_points_x).type(dtype)
diag_ind_y = torch.arange(0, num_points_y).type(dtype)
# brk()
rx = xx[:, diag_ind_x, diag_ind_x].unsqueeze(1).expand_as(zz.transpose(2, 1))
ry = yy[:, diag_ind_y, diag_ind_y].unsqueeze(1).expand_as(zz)
P = (rx.transpose(2, 1) + ry - 2 * zz)
return P