Herded Gibbs Sampling |
Luke Bornn, Yutian Chen, Nando de Freitas, Mareija Eskelin, Jing Fang, Max Welling |
|
code |
-1 |
Knowledge Matters: Importance of Prior Information for Optimization |
Çaglar Gülçehre, Yoshua Bengio |
|
code |
-1 |
The Neural Representation Benchmark and its Evaluation on Brain and Machine |
Charles F. Cadieu, Ha Hong, Dan Yamins, Nicolas Pinto, Najib J. Majaj, James J. DiCarlo |
|
code |
-1 |
Feature grouping from spatially constrained multiplicative interaction |
Felix Bauer, Roland Memisevic |
|
code |
-1 |
Discriminative Recurrent Sparse Auto-Encoders |
Jason Tyler Rolfe, Yann LeCun |
|
code |
-1 |
Discrete Restricted Boltzmann Machines |
Guido Montúfar, Jason Morton |
|
code |
-1 |
Indoor Semantic Segmentation using depth information |
Camille Couprie, Clément Farabet, Laurent Najman, Yann LeCun |
|
code |
-1 |
Stochastic Pooling for Regularization of Deep Convolutional Neural Networks |
Matthew D. Zeiler, Rob Fergus |
|
code |
-1 |
Information Theoretic Learning with Infinitely Divisible Kernels |
Luis Gonzalo Sánchez Giraldo, José C. Príncipe |
|
code |
-1 |
Regularized Auto-Encoders Estimate Local Statistics |
Guillaume Alain, Yoshua Bengio, Salah Rifai |
|
code |
-1 |
Complexity of Representation and Inference in Compositional Models with Part Sharing |
Alan L. Yuille, Roozbeh Mottaghi |
|
code |
-1 |
Feature Learning in Deep Neural Networks - A Study on Speech Recognition Tasks |
Dong Yu, Michael L. Seltzer, Jinyu Li, JuiTing Huang, Frank Seide |
|
code |
-1 |
Barnes-Hut-SNE |
Laurens van der Maaten |
|
code |
-1 |
Efficient Learning of Domain-invariant Image Representations |
Judy Hoffman, Erik Rodner, Jeff Donahue, Kate Saenko, Trevor Darrell |
|
code |
-1 |
Cutting Recursive Autoencoder Trees |
Christian Scheible, Hinrich Schütze |
|
code |
-1 |
Saturating Auto-Encoder |
Rostislav Goroshin, Yann LeCun |
|
code |
-1 |
Jitter-Adaptive Dictionary Learning - Application to Multi-Trial Neuroelectric Signals |
Sebastian Hitziger, Maureen Clerc, Alexandre Gramfort, Sandrine Saillet, Christian G. Bénar, Théodore Papadopoulo |
|
code |
-1 |
Training Neural Networks with Stochastic Hessian-Free Optimization |
Ryan Kiros |
|
code |
-1 |
Metric-Free Natural Gradient for Joint-Training of Boltzmann Machines |
Guillaume Desjardins, Razvan Pascanu, Aaron C. Courville, Yoshua Bengio |
|
code |
-1 |
Adaptive learning rates and parallelization for stochastic, sparse, non-smooth gradients |
Tom Schaul, Yann LeCun |
|
code |
-1 |
Block Coordinate Descent for Sparse NMF |
Vamsi K. Potluru, Sergey M. Plis, Jonathan Le Roux, Barak A. Pearlmutter, Vince D. Calhoun, Thomas P. Hayes |
|
code |
-1 |
The Diagonalized Newton Algorithm for Nonnegative Matrix Factorization |
Hugo Van hamme |
|
code |
-1 |
Local Component Analysis |
Nicolas Le Roux, Francis R. Bach |
|
code |
-1 |