Making Neural Programming Architectures Generalize via Recursion |
Jonathon Cai, Richard Shin, Dawn Song |
|
code |
-1 |
End-to-end Optimized Image Compression |
Johannes Ballé, Valero Laparra, Eero P. Simoncelli |
|
code |
-1 |
Optimization as a Model for Few-Shot Learning |
Sachin Ravi, Hugo Larochelle |
|
code |
-1 |
Learning End-to-End Goal-Oriented Dialog |
Antoine Bordes, YLan Boureau, Jason Weston |
|
code |
-1 |
Towards Principled Methods for Training Generative Adversarial Networks |
Martín Arjovsky, Léon Bottou |
|
code |
-1 |
Reinforcement Learning with Unsupervised Auxiliary Tasks |
Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David Silver, Koray Kavukcuoglu |
|
code |
-1 |
Multi-Agent Cooperation and the Emergence of (Natural) Language |
Angeliki Lazaridou, Alexander Peysakhovich, Marco Baroni |
|
code |
-1 |
Understanding deep learning requires rethinking generalization |
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals |
|
code |
-1 |
Neural Architecture Search with Reinforcement Learning |
Barret Zoph, Quoc V. Le |
|
code |
-1 |
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic |
Shixiang Gu, Timothy P. Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey Levine |
|
code |
-1 |
Learning to Act by Predicting the Future |
Alexey Dosovitskiy, Vladlen Koltun |
|
code |
-1 |
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima |
Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping Tak Peter Tang |
|
code |
-1 |
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data |
Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian J. Goodfellow, Kunal Talwar |
|
code |
-1 |
Amortised MAP Inference for Image Super-resolution |
Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, Ferenc Huszár |
|
code |
-1 |
Learning Graphical State Transitions |
Daniel D. Johnson |
|
code |
-1 |
Maximum Entropy Flow Networks |
Gabriel LoaizaGanem, Yuanjun Gao, John P. Cunningham |
|
code |
-1 |
Topology and Geometry of Half-Rectified Network Optimization |
C. Daniel Freeman, Joan Bruna |
|
code |
-1 |
Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer |
Sergey Zagoruyko, Nikos Komodakis |
|
code |
-1 |
Learning Visual Servoing with Deep Features and Fitted Q-Iteration |
Alex X. Lee, Sergey Levine, Pieter Abbeel |
|
code |
-1 |
Stochastic Neural Networks for Hierarchical Reinforcement Learning |
Carlos Florensa, Yan Duan, Pieter Abbeel |
|
code |
-1 |
Nonparametric Neural Networks |
George Philipp, Jaime G. Carbonell |
|
code |
-1 |
Distributed Second-Order Optimization using Kronecker-Factored Approximations |
Jimmy Ba, Roger B. Grosse, James Martens |
|
code |
-1 |
Pruning Filters for Efficient ConvNets |
Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, Hans Peter Graf |
|
code |
-1 |
Learning to Generate Samples from Noise through Infusion Training |
Florian Bordes, Sina Honari, Pascal Vincent |
|
code |
-1 |
Filter shaping for Convolutional Neural Networks |
Xingyi Li, Fuxin Li, Xiaoli Z. Fern, Raviv Raich |
|
code |
-1 |
Normalizing the Normalizers: Comparing and Extending Network Normalization Schemes |
Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H. Sinz, Richard S. Zemel |
|
code |
-1 |
Multilayer Recurrent Network Models of Primate Retinal Ganglion Cell Responses |
Eleanor Batty, Josh Merel, Nora Brackbill, Alexander Heitman, Alexander Sher, Alan M. Litke, E. J. Chichilnisky, Liam Paninski |
|
code |
-1 |
Improving Generative Adversarial Networks with Denoising Feature Matching |
David WardeFarley, Yoshua Bengio |
|
code |
-1 |
Efficient Vector Representation for Documents through Corruption |
Minmin Chen |
|
code |
-1 |
Learning Invariant Feature Spaces to Transfer Skills with Reinforcement Learning |
Abhishek Gupta, Coline Devin, Yuxuan Liu, Pieter Abbeel, Sergey Levine |
|
code |
-1 |
Transfer of View-manifold Learning to Similarity Perception of Novel Objects |
Xingyu Lin, Hao Wang, Zhihao Li, Yimeng Zhang, Alan L. Yuille, Tai Sing Lee |
|
code |
-1 |
What does it take to generate natural textures? |
Ivan Ustyuzhaninov, Wieland Brendel, Leon A. Gatys, Matthias Bethge |
|
code |
-1 |
Emergence of foveal image sampling from learning to attend in visual scenes |
Brian Cheung, Eric Weiss, Bruno A. Olshausen |
|
code |
-1 |
An Information-Theoretic Framework for Fast and Robust Unsupervised Learning via Neural Population Infomax |
Wentao Huang, Kechen Zhang |
|
code |
-1 |
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications |
Tim Salimans, Andrej Karpathy, Xi Chen, Diederik P. Kingma |
|
code |
-1 |
Mode Regularized Generative Adversarial Networks |
Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, Wenjie Li |
|
code |
-1 |
Highway and Residual Networks learn Unrolled Iterative Estimation |
Klaus Greff, Rupesh Kumar Srivastava, Jürgen Schmidhuber |
|
code |
-1 |
Improving Neural Language Models with a Continuous Cache |
Edouard Grave, Armand Joulin, Nicolas Usunier |
|
code |
-1 |
Unsupervised Cross-Domain Image Generation |
Yaniv Taigman, Adam Polyak, Lior Wolf |
|
code |
-1 |
Third Person Imitation Learning |
Bradly C. Stadie, Pieter Abbeel, Ilya Sutskever |
|
code |
-1 |
Variational Recurrent Adversarial Deep Domain Adaptation |
Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, Yan Liu |
|
code |
-1 |
Program Synthesis for Character Level Language Modeling |
Pavol Bielik, Veselin Raychev, Martin T. Vechev |
|
code |
-1 |
Episodic Exploration for Deep Deterministic Policies for StarCraft Micromanagement |
Nicolas Usunier, Gabriel Synnaeve, Zeming Lin, Soumith Chintala |
|
code |
-1 |
Soft Weight-Sharing for Neural Network Compression |
Karen Ullrich, Edward Meeds, Max Welling |
|
code |
-1 |
Neural Program Lattices |
Chengtao Li, Daniel Tarlow, Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman |
|
code |
-1 |
Tracking the World State with Recurrent Entity Networks |
Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, Yann LeCun |
|
code |
-1 |
Steerable CNNs |
Taco S. Cohen, Max Welling |
|
code |
-1 |
Learning to Query, Reason, and Answer Questions On Ambiguous Texts |
Xiaoxiao Guo, Tim Klinger, Clemens Rosenbaum, Joseph P. Bigus, Murray Campbell, Ban Kawas, Kartik Talamadupula, Gerry Tesauro, Satinder Singh |
|
code |
-1 |
Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning |
William Lotter, Gabriel Kreiman, David D. Cox |
|
code |
-1 |
Diet Networks: Thin Parameters for Fat Genomics |
Adriana Romero, Pierre Luc Carrier, Akram Erraqabi, Tristan Sylvain, Alex Auvolat, Etienne Dejoie, MarcAndré Legault, MariePierre Dubé, Julie G. Hussin, Yoshua Bengio |
|
code |
-1 |
Deep Biaffine Attention for Neural Dependency Parsing |
Timothy Dozat, Christopher D. Manning |
|
code |
-1 |
PixelVAE: A Latent Variable Model for Natural Images |
Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taïga, Francesco Visin, David Vázquez, Aaron C. Courville |
|
code |
-1 |
Snapshot Ensembles: Train 1, Get M for Free |
Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, Kilian Q. Weinberger |
|
code |
-1 |
Training Agent for First-Person Shooter Game with Actor-Critic Curriculum Learning |
Yuxin Wu, Yuandong Tian |
|
code |
-1 |
Neuro-Symbolic Program Synthesis |
Emilio Parisotto, Abdelrahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, Pushmeet Kohli |
|
code |
-1 |
Decomposing Motion and Content for Natural Video Sequence Prediction |
Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, Honglak Lee |
|
code |
-1 |
Towards a Neural Statistician |
Harrison Edwards, Amos J. Storkey |
|
code |
-1 |
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy |
Danica J. Sutherland, HsiaoYu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alexander J. Smola, Arthur Gretton |
|
code |
-1 |
Generalizing Skills with Semi-Supervised Reinforcement Learning |
Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine |
|
code |
-1 |
Learning Curve Prediction with Bayesian Neural Networks |
Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, Frank Hutter |
|
code |
-1 |
Learning to Optimize |
Ke Li, Jitendra Malik |
|
code |
-1 |
A Compare-Aggregate Model for Matching Text Sequences |
Shuohang Wang, Jing Jiang |
|
code |
-1 |
Data Noising as Smoothing in Neural Network Language Models |
Ziang Xie, Sida I. Wang, Jiwei Li, Daniel Lévy, Aiming Nie, Dan Jurafsky, Andrew Y. Ng |
|
code |
-1 |
Training Compressed Fully-Connected Networks with a Density-Diversity Penalty |
Shengjie Wang, Haoran Cai, Jeff A. Bilmes, William S. Noble |
|
code |
-1 |
Autoencoding Variational Inference For Topic Models |
Akash Srivastava, Charles Sutton |
|
code |
-1 |
Optimal Binary Autoencoding with Pairwise Correlations |
Akshay Balsubramani |
|
code |
-1 |
On the Quantitative Analysis of Decoder-Based Generative Models |
Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, Roger B. Grosse |
|
code |
-1 |
Trained Ternary Quantization |
Chenzhuo Zhu, Song Han, Huizi Mao, William J. Dally |
|
code |
-1 |
DSD: Dense-Sparse-Dense Training for Deep Neural Networks |
Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Vajda, Manohar Paluri, John Tran, Bryan Catanzaro, William J. Dally |
|
code |
-1 |
A Compositional Object-Based Approach to Learning Physical Dynamics |
Michael Chang, Tomer D. Ullman, Antonio Torralba, Joshua B. Tenenbaum |
|
code |
-1 |
Learning to Remember Rare Events |
Lukasz Kaiser, Ofir Nachum, Aurko Roy, Samy Bengio |
|
code |
-1 |
Transfer Learning for Sequence Tagging with Hierarchical Recurrent Networks |
Zhilin Yang, Ruslan Salakhutdinov, William W. Cohen |
|
code |
-1 |
Words or Characters? Fine-grained Gating for Reading Comprehension |
Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, Ruslan Salakhutdinov |
|
code |
-1 |
A Simple but Tough-to-Beat Baseline for Sentence Embeddings |
Sanjeev Arora, Yingyu Liang, Tengyu Ma |
|
code |
-1 |
Capacity and Trainability in Recurrent Neural Networks |
Jasmine Collins, Jascha SohlDickstein, David Sussillo |
|
code |
-1 |
Learning to Perform Physics Experiments via Deep Reinforcement Learning |
Misha Denil, Pulkit Agrawal, Tejas D. Kulkarni, Tom Erez, Peter W. Battaglia, Nando de Freitas |
|
code |
-1 |
Improving Policy Gradient by Exploring Under-appreciated Rewards |
Ofir Nachum, Mohammad Norouzi, Dale Schuurmans |
|
code |
-1 |
Deep Learning with Dynamic Computation Graphs |
Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, Peter Norvig |
|
code |
-1 |
Calibrating Energy-based Generative Adversarial Networks |
Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard H. Hovy, Aaron C. Courville |
|
code |
-1 |
Pruning Convolutional Neural Networks for Resource Efficient Inference |
Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, Jan Kautz |
|
code |
-1 |
Query-Reduction Networks for Question Answering |
Min Joon Seo, Sewon Min, Ali Farhadi, Hannaneh Hajishirzi |
|
code |
-1 |
Designing Neural Network Architectures using Reinforcement Learning |
Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar |
|
code |
-1 |
Machine Comprehension Using Match-LSTM and Answer Pointer |
Shuohang Wang, Jing Jiang |
|
code |
-1 |
DeepDSL: A Compilation-based Domain-Specific Language for Deep Learning |
Tian Zhao, Xiaobing Huang, Yu Cao |
|
code |
-1 |
Bidirectional Attention Flow for Machine Comprehension |
Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, Hannaneh Hajishirzi |
|
code |
-1 |
Incorporating long-range consistency in CNN-based texture generation |
Guillaume Berger, Roland Memisevic |
|
code |
-1 |
Dynamic Coattention Networks For Question Answering |
Caiming Xiong, Victor Zhong, Richard Socher |
|
code |
-1 |
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model |
Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron C. Courville, Yoshua Bengio |
|
code |
-1 |
Metacontrol for Adaptive Imagination-Based Optimization |
Jessica B. Hamrick, Andrew J. Ballard, Razvan Pascanu, Oriol Vinyals, Nicolas Heess, Peter W. Battaglia |
|
code |
-1 |
Exploring Sparsity in Recurrent Neural Networks |
Sharan Narang, Greg Diamos, Shubho Sengupta, Erich Elsen |
|
code |
-1 |
Lossy Image Compression with Compressive Autoencoders |
Lucas Theis, Wenzhe Shi, Andrew Cunningham, Ferenc Huszár |
|
code |
-1 |
Structured Attention Networks |
Yoon Kim, Carl Denton, Luong Hoang, Alexander M. Rush |
|
code |
-1 |
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations |
David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Aaron C. Courville, Christopher J. Pal |
|
code |
-1 |
Deep Probabilistic Programming |
Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, David M. Blei |
|
code |
-1 |
LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation |
Jianwei Yang, Anitha Kannan, Dhruv Batra, Devi Parikh |
|
code |
-1 |
Variational Lossy Autoencoder |
Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, Pieter Abbeel |
|
code |
-1 |
A recurrent neural network without chaos |
Thomas Laurent, James von Brecht |
|
code |
-1 |
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer |
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton, Jeff Dean |
|
code |
-1 |
Tree-structured decoding with doubly-recurrent neural networks |
David AlvarezMelis, Tommi S. Jaakkola |
|
code |
-1 |
Introspection: Accelerating Neural Network Training By Learning Weight Evolution |
Abhishek Sinha, Aahitagni Mukherjee, Mausoom Sarkar, Balaji Krishnamurthy |
|
code |
-1 |
Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization |
Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, Ameet Talwalkar |
|
code |
-1 |
Lie-Access Neural Turing Machines |
Greg Yang, Alexander M. Rush |
|
code |
-1 |
Quasi-Recurrent Neural Networks |
James Bradbury, Stephen Merity, Caiming Xiong, Richard Socher |
|
code |
-1 |
Recurrent Environment Simulators |
Silvia Chiappa, Sébastien Racanière, Daan Wierstra, Shakir Mohamed |
|
code |
-1 |
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles |
Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, Sergey Levine |
|
code |
-1 |
Attend, Adapt and Transfer: Attentive Deep Architecture for Adaptive Transfer from multiple sources in the same domain |
Janarthanan Rajendran, Aravind S. Lakshminarayanan, Mitesh M. Khapra, P. Prasanna, Balaraman Ravindran |
|
code |
-1 |
Multi-view Recurrent Neural Acoustic Word Embeddings |
Wanjia He, Weiran Wang, Karen Livescu |
|
code |
-1 |
Learning Features of Music From Scratch |
John Thickstun, Zaïd Harchaoui, Sham M. Kakade |
|
code |
-1 |
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks |
Dan Hendrycks, Kevin Gimpel |
|
code |
-1 |
Learning to superoptimize programs |
Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H. S. Torr, Pushmeet Kohli |
|
code |
-1 |
Trusting SVM for Piecewise Linear CNNs |
Leonard Berrada, Andrew Zisserman, M. Pawan Kumar |
|
code |
-1 |
Sigma Delta Quantized Networks |
Peter O'Connor, Max Welling |
|
code |
-1 |
A Structured Self-Attentive Sentence Embedding |
Zhouhan Lin, Minwei Feng, Cícero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, Yoshua Bengio |
|
code |
-1 |
Regularizing CNNs with Locally Constrained Decorrelations |
Pau Rodríguez, Jordi Gonzàlez, Guillem Cucurull, Josep M. Gonfaus, F. Xavier Roca |
|
code |
-1 |
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables |
Chris J. Maddison, Andriy Mnih, Yee Whye Teh |
|
code |
-1 |
Unrolled Generative Adversarial Networks |
Luke Metz, Ben Poole, David Pfau, Jascha SohlDickstein |
|
code |
-1 |
TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency |
Adji B. Dieng, Chong Wang, Jianfeng Gao, John W. Paisley |
|
code |
-1 |
Frustratingly Short Attention Spans in Neural Language Modeling |
Michal Daniluk, Tim Rocktäschel, Johannes Welbl, Sebastian Riedel |
|
code |
-1 |
Recurrent Hidden Semi-Markov Model |
Hanjun Dai, Bo Dai, YanMing Zhang, Shuang Li, Le Song |
|
code |
-1 |
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data |
Maximilian Karl, Maximilian Soelch, Justin Bayer, Patrick van der Smagt |
|
code |
-1 |
Generative Multi-Adversarial Networks |
Ishan P. Durugkar, Ian Gemp, Sridhar Mahadevan |
|
code |
-1 |
Mollifying Networks |
Çaglar Gülçehre, Marcin Moczulski, Francesco Visin, Yoshua Bengio |
|
code |
-1 |
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework |
Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir Mohamed, Alexander Lerchner |
|
code |
-1 |
Offline bilingual word vectors, orthogonal transformations and the inverted softmax |
Samuel L. Smith, David H. P. Turban, Steven Hamblin, Nils Y. Hammerla |
|
code |
-1 |
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis |
Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, Max Welling |
|
code |
-1 |
Categorical Reparameterization with Gumbel-Softmax |
Eric Jang, Shixiang Gu, Ben Poole |
|
code |
-1 |
Online Bayesian Transfer Learning for Sequential Data Modeling |
Priyank Jaini, Zhitang Chen, Pablo Carbajal, Edith Law, Laura Middleton, Kayla Regan, Mike Schaekermann, George Trimponias, James Tung, Pascal Poupart |
|
code |
-1 |
Latent Sequence Decompositions |
William Chan, Yu Zhang, Quoc V. Le, Navdeep Jaitly |
|
code |
-1 |
Paleo: A Performance Model for Deep Neural Networks |
Hang Qi, Evan R. Sparks, Ameet Talwalkar |
|
code |
-1 |
Combining policy gradient and Q-learning |
Brendan O'Donoghue, Rémi Munos, Koray Kavukcuoglu, Volodymyr Mnih |
|
code |
-1 |
Density estimation using Real NVP |
Laurent Dinh, Jascha SohlDickstein, Samy Bengio |
|
code |
-1 |
Recurrent Batch Normalization |
Tim Cooijmans, Nicolas Ballas, César Laurent, Çaglar Gülçehre, Aaron C. Courville |
|
code |
-1 |
SGDR: Stochastic Gradient Descent with Warm Restarts |
Ilya Loshchilov, Frank Hutter |
|
code |
-1 |
Learning a Natural Language Interface with Neural Programmer |
Arvind Neelakantan, Quoc V. Le, Martín Abadi, Andrew McCallum, Dario Amodei |
|
code |
-1 |
Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU |
Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, Jan Kautz |
|
code |
-1 |
Learning to Navigate in Complex Environments |
Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy Ballard, Andrea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, Raia Hadsell |
|
code |
-1 |
DeepCoder: Learning to Write Programs |
Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, Daniel Tarlow |
|
code |
-1 |
Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks |
Stefan Depeweg, José Miguel HernándezLobato, Finale DoshiVelez, Steffen Udluft |
|
code |
-1 |
Variable Computation in Recurrent Neural Networks |
Yacine Jernite, Edouard Grave, Armand Joulin, Tomás Mikolov |
|
code |
-1 |
Deep Variational Information Bottleneck |
Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, Kevin Murphy |
|
code |
-1 |
The Neural Noisy Channel |
Lei Yu, Phil Blunsom, Chris Dyer, Edward Grefenstette, Tomás Kociský |
|
code |
-1 |
Automatic Rule Extraction from Long Short Term Memory Networks |
W. James Murdoch, Arthur Szlam |
|
code |
-1 |
Dialogue Learning With Human-in-the-Loop |
Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc'Aurelio Ranzato, Jason Weston |
|
code |
-1 |
Adversarially Learned Inference |
Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martín Arjovsky, Olivier Mastropietro, Aaron C. Courville |
|
code |
-1 |
Learning through Dialogue Interactions by Asking Questions |
Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc'Aurelio Ranzato, Jason Weston |
|
code |
-1 |
Deep Information Propagation |
Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, Jascha SohlDickstein |
|
code |
-1 |
FractalNet: Ultra-Deep Neural Networks without Residuals |
Gustav Larsson, Michael Maire, Gregory Shakhnarovich |
|
code |
-1 |
Revisiting Classifier Two-Sample Tests |
David LopezPaz, Maxime Oquab |
|
code |
-1 |
Learning to Repeat: Fine Grained Action Repetition for Deep Reinforcement Learning |
Sahil Sharma, Aravind S. Lakshminarayanan, Balaraman Ravindran |
|
code |
-1 |
Loss-aware Binarization of Deep Networks |
Lu Hou, Quanming Yao, James T. Kwok |
|
code |
-1 |
Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening |
Frank S. He, Yang Liu, Alexander G. Schwing, Jian Peng |
|
code |
-1 |
Energy-based Generative Adversarial Networks |
Junbo Jake Zhao, Michaël Mathieu, Yann LeCun |
|
code |
-1 |
Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning |
Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, Susanne SamingerPlatz |
|
code |
-1 |
Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights |
Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, Yurong Chen |
|
code |
-1 |
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys |
Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer T. Chayes, Levent Sagun, Riccardo Zecchina |
|
code |
-1 |
Deep Multi-task Representation Learning: A Tensor Factorisation Approach |
Yongxin Yang, Timothy M. Hospedales |
|
code |
-1 |
Sample Efficient Actor-Critic with Experience Replay |
Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Rémi Munos, Koray Kavukcuoglu, Nando de Freitas |
|
code |
-1 |
Temporal Ensembling for Semi-Supervised Learning |
Samuli Laine, Timo Aila |
|
code |
-1 |
On Detecting Adversarial Perturbations |
Jan Hendrik Metzen, Tim Genewein, Volker Fischer, Bastian Bischoff |
|
code |
-1 |
Training deep neural-networks using a noise adaptation layer |
Jacob Goldberger, Ehud BenReuven |
|
code |
-1 |
Learning to Compose Words into Sentences with Reinforcement Learning |
Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling |
|
code |
-1 |
Delving into Transferable Adversarial Examples and Black-box Attacks |
Yanpei Liu, Xinyun Chen, Chang Liu, Dawn Song |
|
code |
-1 |
Identity Matters in Deep Learning |
Moritz Hardt, Tengyu Ma |
|
code |
-1 |
Adversarial Feature Learning |
Jeff Donahue, Philipp Krähenbühl, Trevor Darrell |
|
code |
-1 |
Towards the Limit of Network Quantization |
Yoojin Choi, Mostafa ElKhamy, Jungwon Lee |
|
code |
-1 |
Faster CNNs with Direct Sparse Convolutions and Guided Pruning |
Jongsoo Park, Sheng R. Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, Pradeep Dubey |
|
code |
-1 |
Stick-Breaking Variational Autoencoders |
Eric T. Nalisnick, Padhraic Smyth |
|
code |
-1 |
Batch Policy Gradient Methods for Improving Neural Conversation Models |
Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter |
|
code |
-1 |
Support Regularized Sparse Coding and Its Fast Encoder |
Yingzhen Yang, Jiahui Yu, Pushmeet Kohli, Jianchao Yang, Thomas S. Huang |
|
code |
-1 |
Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling |
Hakan Inan, Khashayar Khosravi, Richard Socher |
|
code |
-1 |
Towards Deep Interpretability (MUS-ROVER II): Learning Hierarchical Representations of Tonal Music |
Haizi Yu, Lav R. Varshney |
|
code |
-1 |
Discrete Variational Autoencoders |
Jason Tyler Rolfe |
|
code |
-1 |
Do Deep Convolutional Nets Really Need to be Deep and Convolutional? |
Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Özlem Aslan, Shengjie Wang, Abdelrahman Mohamed, Matthai Philipose, Matthew Richardson, Rich Caruana |
|
code |
-1 |
Geometry of Polysemy |
Jiaqi Mu, Suma Bhat, Pramod Viswanath |
|
code |
-1 |
Learning Invariant Representations Of Planar Curves |
Gautam Pai, Aaron Wetzler, Ron Kimmel |
|
code |
-1 |
Reasoning with Memory Augmented Neural Networks for Language Comprehension |
Tsendsuren Munkhdalai, Hong Yu |
|
code |
-1 |
Learning Recurrent Representations for Hierarchical Behavior Modeling |
Eyrun Eyjolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona |
|
code |
-1 |
Adversarial Machine Learning at Scale |
Alexey Kurakin, Ian J. Goodfellow, Samy Bengio |
|
code |
-1 |
Predicting Medications from Diagnostic Codes with Recurrent Neural Networks |
Jacek M. Bajor, Thomas A. Lasko |
|
code |
-1 |
Recurrent Mixture Density Network for Spatiotemporal Visual Attention |
Loris Bazzani, Hugo Larochelle, Lorenzo Torresani |
|
code |
-1 |
Inductive Bias of Deep Convolutional Networks through Pooling Geometry |
Nadav Cohen, Amnon Shashua |
|
code |
-1 |
Efficient Representation of Low-Dimensional Manifolds using Deep Networks |
Ronen Basri, David W. Jacobs |
|
code |
-1 |
Semi-Supervised Classification with Graph Convolutional Networks |
Thomas N. Kipf, Max Welling |
|
code |
-1 |
Sparsely-Connected Neural Networks: Towards Efficient VLSI Implementation of Deep Neural Networks |
Arash Ardakani, Carlo Condo, Warren J. Gross |
|
code |
-1 |
Adversarial Training Methods for Semi-Supervised Text Classification |
Takeru Miyato, Andrew M. Dai, Ian J. Goodfellow |
|
code |
-1 |
Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks |
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, Yoav Goldberg |
|
code |
-1 |
Pointer Sentinel Mixture Models |
Stephen Merity, Caiming Xiong, James Bradbury, Richard Socher |
|
code |
-1 |
An Actor-Critic Algorithm for Sequence Prediction |
Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C. Courville, Yoshua Bengio |
|
code |
-1 |
Understanding Trainable Sparse Coding with Matrix Factorization |
Thomas Moreau, Joan Bruna |
|
code |
-1 |
Tighter bounds lead to improved classifiers |
Nicolas Le Roux |
|
code |
-1 |
HolStep: A Machine Learning Dataset for Higher-order Logic Theorem Proving |
Cezary Kaliszyk, François Chollet, Christian Szegedy |
|
code |
-1 |
Why Deep Neural Networks for Function Approximation? |
Shiyu Liang, R. Srikant |
|
code |
-1 |
Hierarchical Multiscale Recurrent Neural Networks |
Junyoung Chung, Sungjin Ahn, Yoshua Bengio |
|
code |
-1 |
Neural Photo Editing with Introspective Adversarial Networks |
Andrew Brock, Theodore Lim, James M. Ritchie, Nick Weston |
|
code |
-1 |
Dropout with Expectation-linear Regularization |
Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu, Yuntian Deng, Eduard H. Hovy |
|
code |
-1 |
HyperNetworks |
David Ha, Andrew M. Dai, Quoc V. Le |
|
code |
-1 |
A Learned Representation For Artistic Style |
Vincent Dumoulin, Manjunath Kudlur |
|
code |
-1 |
Hadamard Product for Low-rank Bilinear Pooling |
JinHwa Kim, Kyoung Woon On, Woosang Lim, Jeonghee Kim, JungWoo Ha, ByoungTak Zhang |
|
code |
-1 |