Skip to content

Latest commit

 

History

History
202 lines (201 loc) · 55.7 KB

iclr2017.md

File metadata and controls

202 lines (201 loc) · 55.7 KB

ICLR2017 Paper List

论文 作者 摘要 代码 引用数
Making Neural Programming Architectures Generalize via Recursion Jonathon Cai, Richard Shin, Dawn Song code -1
End-to-end Optimized Image Compression Johannes Ballé, Valero Laparra, Eero P. Simoncelli code -1
Optimization as a Model for Few-Shot Learning Sachin Ravi, Hugo Larochelle code -1
Learning End-to-End Goal-Oriented Dialog Antoine Bordes, YLan Boureau, Jason Weston code -1
Towards Principled Methods for Training Generative Adversarial Networks Martín Arjovsky, Léon Bottou code -1
Reinforcement Learning with Unsupervised Auxiliary Tasks Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David Silver, Koray Kavukcuoglu code -1
Multi-Agent Cooperation and the Emergence of (Natural) Language Angeliki Lazaridou, Alexander Peysakhovich, Marco Baroni code -1
Understanding deep learning requires rethinking generalization Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals code -1
Neural Architecture Search with Reinforcement Learning Barret Zoph, Quoc V. Le code -1
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic Shixiang Gu, Timothy P. Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey Levine code -1
Learning to Act by Predicting the Future Alexey Dosovitskiy, Vladlen Koltun code -1
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping Tak Peter Tang code -1
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian J. Goodfellow, Kunal Talwar code -1
Amortised MAP Inference for Image Super-resolution Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, Ferenc Huszár code -1
Learning Graphical State Transitions Daniel D. Johnson code -1
Maximum Entropy Flow Networks Gabriel LoaizaGanem, Yuanjun Gao, John P. Cunningham code -1
Topology and Geometry of Half-Rectified Network Optimization C. Daniel Freeman, Joan Bruna code -1
Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer Sergey Zagoruyko, Nikos Komodakis code -1
Learning Visual Servoing with Deep Features and Fitted Q-Iteration Alex X. Lee, Sergey Levine, Pieter Abbeel code -1
Stochastic Neural Networks for Hierarchical Reinforcement Learning Carlos Florensa, Yan Duan, Pieter Abbeel code -1
Nonparametric Neural Networks George Philipp, Jaime G. Carbonell code -1
Distributed Second-Order Optimization using Kronecker-Factored Approximations Jimmy Ba, Roger B. Grosse, James Martens code -1
Pruning Filters for Efficient ConvNets Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, Hans Peter Graf code -1
Learning to Generate Samples from Noise through Infusion Training Florian Bordes, Sina Honari, Pascal Vincent code -1
Filter shaping for Convolutional Neural Networks Xingyi Li, Fuxin Li, Xiaoli Z. Fern, Raviv Raich code -1
Normalizing the Normalizers: Comparing and Extending Network Normalization Schemes Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H. Sinz, Richard S. Zemel code -1
Multilayer Recurrent Network Models of Primate Retinal Ganglion Cell Responses Eleanor Batty, Josh Merel, Nora Brackbill, Alexander Heitman, Alexander Sher, Alan M. Litke, E. J. Chichilnisky, Liam Paninski code -1
Improving Generative Adversarial Networks with Denoising Feature Matching David WardeFarley, Yoshua Bengio code -1
Efficient Vector Representation for Documents through Corruption Minmin Chen code -1
Learning Invariant Feature Spaces to Transfer Skills with Reinforcement Learning Abhishek Gupta, Coline Devin, Yuxuan Liu, Pieter Abbeel, Sergey Levine code -1
Transfer of View-manifold Learning to Similarity Perception of Novel Objects Xingyu Lin, Hao Wang, Zhihao Li, Yimeng Zhang, Alan L. Yuille, Tai Sing Lee code -1
What does it take to generate natural textures? Ivan Ustyuzhaninov, Wieland Brendel, Leon A. Gatys, Matthias Bethge code -1
Emergence of foveal image sampling from learning to attend in visual scenes Brian Cheung, Eric Weiss, Bruno A. Olshausen code -1
An Information-Theoretic Framework for Fast and Robust Unsupervised Learning via Neural Population Infomax Wentao Huang, Kechen Zhang code -1
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications Tim Salimans, Andrej Karpathy, Xi Chen, Diederik P. Kingma code -1
Mode Regularized Generative Adversarial Networks Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, Wenjie Li code -1
Highway and Residual Networks learn Unrolled Iterative Estimation Klaus Greff, Rupesh Kumar Srivastava, Jürgen Schmidhuber code -1
Improving Neural Language Models with a Continuous Cache Edouard Grave, Armand Joulin, Nicolas Usunier code -1
Unsupervised Cross-Domain Image Generation Yaniv Taigman, Adam Polyak, Lior Wolf code -1
Third Person Imitation Learning Bradly C. Stadie, Pieter Abbeel, Ilya Sutskever code -1
Variational Recurrent Adversarial Deep Domain Adaptation Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, Yan Liu code -1
Program Synthesis for Character Level Language Modeling Pavol Bielik, Veselin Raychev, Martin T. Vechev code -1
Episodic Exploration for Deep Deterministic Policies for StarCraft Micromanagement Nicolas Usunier, Gabriel Synnaeve, Zeming Lin, Soumith Chintala code -1
Soft Weight-Sharing for Neural Network Compression Karen Ullrich, Edward Meeds, Max Welling code -1
Neural Program Lattices Chengtao Li, Daniel Tarlow, Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman code -1
Tracking the World State with Recurrent Entity Networks Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, Yann LeCun code -1
Steerable CNNs Taco S. Cohen, Max Welling code -1
Learning to Query, Reason, and Answer Questions On Ambiguous Texts Xiaoxiao Guo, Tim Klinger, Clemens Rosenbaum, Joseph P. Bigus, Murray Campbell, Ban Kawas, Kartik Talamadupula, Gerry Tesauro, Satinder Singh code -1
Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning William Lotter, Gabriel Kreiman, David D. Cox code -1
Diet Networks: Thin Parameters for Fat Genomics Adriana Romero, Pierre Luc Carrier, Akram Erraqabi, Tristan Sylvain, Alex Auvolat, Etienne Dejoie, MarcAndré Legault, MariePierre Dubé, Julie G. Hussin, Yoshua Bengio code -1
Deep Biaffine Attention for Neural Dependency Parsing Timothy Dozat, Christopher D. Manning code -1
PixelVAE: A Latent Variable Model for Natural Images Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taïga, Francesco Visin, David Vázquez, Aaron C. Courville code -1
Snapshot Ensembles: Train 1, Get M for Free Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, Kilian Q. Weinberger code -1
Training Agent for First-Person Shooter Game with Actor-Critic Curriculum Learning Yuxin Wu, Yuandong Tian code -1
Neuro-Symbolic Program Synthesis Emilio Parisotto, Abdelrahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, Pushmeet Kohli code -1
Decomposing Motion and Content for Natural Video Sequence Prediction Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, Honglak Lee code -1
Towards a Neural Statistician Harrison Edwards, Amos J. Storkey code -1
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy Danica J. Sutherland, HsiaoYu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alexander J. Smola, Arthur Gretton code -1
Generalizing Skills with Semi-Supervised Reinforcement Learning Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine code -1
Learning Curve Prediction with Bayesian Neural Networks Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, Frank Hutter code -1
Learning to Optimize Ke Li, Jitendra Malik code -1
A Compare-Aggregate Model for Matching Text Sequences Shuohang Wang, Jing Jiang code -1
Data Noising as Smoothing in Neural Network Language Models Ziang Xie, Sida I. Wang, Jiwei Li, Daniel Lévy, Aiming Nie, Dan Jurafsky, Andrew Y. Ng code -1
Training Compressed Fully-Connected Networks with a Density-Diversity Penalty Shengjie Wang, Haoran Cai, Jeff A. Bilmes, William S. Noble code -1
Autoencoding Variational Inference For Topic Models Akash Srivastava, Charles Sutton code -1
Optimal Binary Autoencoding with Pairwise Correlations Akshay Balsubramani code -1
On the Quantitative Analysis of Decoder-Based Generative Models Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, Roger B. Grosse code -1
Trained Ternary Quantization Chenzhuo Zhu, Song Han, Huizi Mao, William J. Dally code -1
DSD: Dense-Sparse-Dense Training for Deep Neural Networks Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Vajda, Manohar Paluri, John Tran, Bryan Catanzaro, William J. Dally code -1
A Compositional Object-Based Approach to Learning Physical Dynamics Michael Chang, Tomer D. Ullman, Antonio Torralba, Joshua B. Tenenbaum code -1
Learning to Remember Rare Events Lukasz Kaiser, Ofir Nachum, Aurko Roy, Samy Bengio code -1
Transfer Learning for Sequence Tagging with Hierarchical Recurrent Networks Zhilin Yang, Ruslan Salakhutdinov, William W. Cohen code -1
Words or Characters? Fine-grained Gating for Reading Comprehension Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, Ruslan Salakhutdinov code -1
A Simple but Tough-to-Beat Baseline for Sentence Embeddings Sanjeev Arora, Yingyu Liang, Tengyu Ma code -1
Capacity and Trainability in Recurrent Neural Networks Jasmine Collins, Jascha SohlDickstein, David Sussillo code -1
Learning to Perform Physics Experiments via Deep Reinforcement Learning Misha Denil, Pulkit Agrawal, Tejas D. Kulkarni, Tom Erez, Peter W. Battaglia, Nando de Freitas code -1
Improving Policy Gradient by Exploring Under-appreciated Rewards Ofir Nachum, Mohammad Norouzi, Dale Schuurmans code -1
Deep Learning with Dynamic Computation Graphs Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, Peter Norvig code -1
Calibrating Energy-based Generative Adversarial Networks Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard H. Hovy, Aaron C. Courville code -1
Pruning Convolutional Neural Networks for Resource Efficient Inference Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, Jan Kautz code -1
Query-Reduction Networks for Question Answering Min Joon Seo, Sewon Min, Ali Farhadi, Hannaneh Hajishirzi code -1
Designing Neural Network Architectures using Reinforcement Learning Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar code -1
Machine Comprehension Using Match-LSTM and Answer Pointer Shuohang Wang, Jing Jiang code -1
DeepDSL: A Compilation-based Domain-Specific Language for Deep Learning Tian Zhao, Xiaobing Huang, Yu Cao code -1
Bidirectional Attention Flow for Machine Comprehension Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, Hannaneh Hajishirzi code -1
Incorporating long-range consistency in CNN-based texture generation Guillaume Berger, Roland Memisevic code -1
Dynamic Coattention Networks For Question Answering Caiming Xiong, Victor Zhong, Richard Socher code -1
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron C. Courville, Yoshua Bengio code -1
Metacontrol for Adaptive Imagination-Based Optimization Jessica B. Hamrick, Andrew J. Ballard, Razvan Pascanu, Oriol Vinyals, Nicolas Heess, Peter W. Battaglia code -1
Exploring Sparsity in Recurrent Neural Networks Sharan Narang, Greg Diamos, Shubho Sengupta, Erich Elsen code -1
Lossy Image Compression with Compressive Autoencoders Lucas Theis, Wenzhe Shi, Andrew Cunningham, Ferenc Huszár code -1
Structured Attention Networks Yoon Kim, Carl Denton, Luong Hoang, Alexander M. Rush code -1
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Aaron C. Courville, Christopher J. Pal code -1
Deep Probabilistic Programming Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, David M. Blei code -1
LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation Jianwei Yang, Anitha Kannan, Dhruv Batra, Devi Parikh code -1
Variational Lossy Autoencoder Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, Pieter Abbeel code -1
A recurrent neural network without chaos Thomas Laurent, James von Brecht code -1
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton, Jeff Dean code -1
Tree-structured decoding with doubly-recurrent neural networks David AlvarezMelis, Tommi S. Jaakkola code -1
Introspection: Accelerating Neural Network Training By Learning Weight Evolution Abhishek Sinha, Aahitagni Mukherjee, Mausoom Sarkar, Balaji Krishnamurthy code -1
Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, Ameet Talwalkar code -1
Lie-Access Neural Turing Machines Greg Yang, Alexander M. Rush code -1
Quasi-Recurrent Neural Networks James Bradbury, Stephen Merity, Caiming Xiong, Richard Socher code -1
Recurrent Environment Simulators Silvia Chiappa, Sébastien Racanière, Daan Wierstra, Shakir Mohamed code -1
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, Sergey Levine code -1
Attend, Adapt and Transfer: Attentive Deep Architecture for Adaptive Transfer from multiple sources in the same domain Janarthanan Rajendran, Aravind S. Lakshminarayanan, Mitesh M. Khapra, P. Prasanna, Balaraman Ravindran code -1
Multi-view Recurrent Neural Acoustic Word Embeddings Wanjia He, Weiran Wang, Karen Livescu code -1
Learning Features of Music From Scratch John Thickstun, Zaïd Harchaoui, Sham M. Kakade code -1
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks Dan Hendrycks, Kevin Gimpel code -1
Learning to superoptimize programs Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H. S. Torr, Pushmeet Kohli code -1
Trusting SVM for Piecewise Linear CNNs Leonard Berrada, Andrew Zisserman, M. Pawan Kumar code -1
Sigma Delta Quantized Networks Peter O'Connor, Max Welling code -1
A Structured Self-Attentive Sentence Embedding Zhouhan Lin, Minwei Feng, Cícero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, Yoshua Bengio code -1
Regularizing CNNs with Locally Constrained Decorrelations Pau Rodríguez, Jordi Gonzàlez, Guillem Cucurull, Josep M. Gonfaus, F. Xavier Roca code -1
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables Chris J. Maddison, Andriy Mnih, Yee Whye Teh code -1
Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha SohlDickstein code -1
TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency Adji B. Dieng, Chong Wang, Jianfeng Gao, John W. Paisley code -1
Frustratingly Short Attention Spans in Neural Language Modeling Michal Daniluk, Tim Rocktäschel, Johannes Welbl, Sebastian Riedel code -1
Recurrent Hidden Semi-Markov Model Hanjun Dai, Bo Dai, YanMing Zhang, Shuang Li, Le Song code -1
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data Maximilian Karl, Maximilian Soelch, Justin Bayer, Patrick van der Smagt code -1
Generative Multi-Adversarial Networks Ishan P. Durugkar, Ian Gemp, Sridhar Mahadevan code -1
Mollifying Networks Çaglar Gülçehre, Marcin Moczulski, Francesco Visin, Yoshua Bengio code -1
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir Mohamed, Alexander Lerchner code -1
Offline bilingual word vectors, orthogonal transformations and the inverted softmax Samuel L. Smith, David H. P. Turban, Steven Hamblin, Nils Y. Hammerla code -1
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, Max Welling code -1
Categorical Reparameterization with Gumbel-Softmax Eric Jang, Shixiang Gu, Ben Poole code -1
Online Bayesian Transfer Learning for Sequential Data Modeling Priyank Jaini, Zhitang Chen, Pablo Carbajal, Edith Law, Laura Middleton, Kayla Regan, Mike Schaekermann, George Trimponias, James Tung, Pascal Poupart code -1
Latent Sequence Decompositions William Chan, Yu Zhang, Quoc V. Le, Navdeep Jaitly code -1
Paleo: A Performance Model for Deep Neural Networks Hang Qi, Evan R. Sparks, Ameet Talwalkar code -1
Combining policy gradient and Q-learning Brendan O'Donoghue, Rémi Munos, Koray Kavukcuoglu, Volodymyr Mnih code -1
Density estimation using Real NVP Laurent Dinh, Jascha SohlDickstein, Samy Bengio code -1
Recurrent Batch Normalization Tim Cooijmans, Nicolas Ballas, César Laurent, Çaglar Gülçehre, Aaron C. Courville code -1
SGDR: Stochastic Gradient Descent with Warm Restarts Ilya Loshchilov, Frank Hutter code -1
Learning a Natural Language Interface with Neural Programmer Arvind Neelakantan, Quoc V. Le, Martín Abadi, Andrew McCallum, Dario Amodei code -1
Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, Jan Kautz code -1
Learning to Navigate in Complex Environments Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy Ballard, Andrea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, Raia Hadsell code -1
DeepCoder: Learning to Write Programs Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, Daniel Tarlow code -1
Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks Stefan Depeweg, José Miguel HernándezLobato, Finale DoshiVelez, Steffen Udluft code -1
Variable Computation in Recurrent Neural Networks Yacine Jernite, Edouard Grave, Armand Joulin, Tomás Mikolov code -1
Deep Variational Information Bottleneck Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, Kevin Murphy code -1
The Neural Noisy Channel Lei Yu, Phil Blunsom, Chris Dyer, Edward Grefenstette, Tomás Kociský code -1
Automatic Rule Extraction from Long Short Term Memory Networks W. James Murdoch, Arthur Szlam code -1
Dialogue Learning With Human-in-the-Loop Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc'Aurelio Ranzato, Jason Weston code -1
Adversarially Learned Inference Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martín Arjovsky, Olivier Mastropietro, Aaron C. Courville code -1
Learning through Dialogue Interactions by Asking Questions Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc'Aurelio Ranzato, Jason Weston code -1
Deep Information Propagation Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, Jascha SohlDickstein code -1
FractalNet: Ultra-Deep Neural Networks without Residuals Gustav Larsson, Michael Maire, Gregory Shakhnarovich code -1
Revisiting Classifier Two-Sample Tests David LopezPaz, Maxime Oquab code -1
Learning to Repeat: Fine Grained Action Repetition for Deep Reinforcement Learning Sahil Sharma, Aravind S. Lakshminarayanan, Balaraman Ravindran code -1
Loss-aware Binarization of Deep Networks Lu Hou, Quanming Yao, James T. Kwok code -1
Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening Frank S. He, Yang Liu, Alexander G. Schwing, Jian Peng code -1
Energy-based Generative Adversarial Networks Junbo Jake Zhao, Michaël Mathieu, Yann LeCun code -1
Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, Susanne SamingerPlatz code -1
Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, Yurong Chen code -1
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer T. Chayes, Levent Sagun, Riccardo Zecchina code -1
Deep Multi-task Representation Learning: A Tensor Factorisation Approach Yongxin Yang, Timothy M. Hospedales code -1
Sample Efficient Actor-Critic with Experience Replay Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Rémi Munos, Koray Kavukcuoglu, Nando de Freitas code -1
Temporal Ensembling for Semi-Supervised Learning Samuli Laine, Timo Aila code -1
On Detecting Adversarial Perturbations Jan Hendrik Metzen, Tim Genewein, Volker Fischer, Bastian Bischoff code -1
Training deep neural-networks using a noise adaptation layer Jacob Goldberger, Ehud BenReuven code -1
Learning to Compose Words into Sentences with Reinforcement Learning Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling code -1
Delving into Transferable Adversarial Examples and Black-box Attacks Yanpei Liu, Xinyun Chen, Chang Liu, Dawn Song code -1
Identity Matters in Deep Learning Moritz Hardt, Tengyu Ma code -1
Adversarial Feature Learning Jeff Donahue, Philipp Krähenbühl, Trevor Darrell code -1
Towards the Limit of Network Quantization Yoojin Choi, Mostafa ElKhamy, Jungwon Lee code -1
Faster CNNs with Direct Sparse Convolutions and Guided Pruning Jongsoo Park, Sheng R. Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, Pradeep Dubey code -1
Stick-Breaking Variational Autoencoders Eric T. Nalisnick, Padhraic Smyth code -1
Batch Policy Gradient Methods for Improving Neural Conversation Models Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter code -1
Support Regularized Sparse Coding and Its Fast Encoder Yingzhen Yang, Jiahui Yu, Pushmeet Kohli, Jianchao Yang, Thomas S. Huang code -1
Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling Hakan Inan, Khashayar Khosravi, Richard Socher code -1
Towards Deep Interpretability (MUS-ROVER II): Learning Hierarchical Representations of Tonal Music Haizi Yu, Lav R. Varshney code -1
Discrete Variational Autoencoders Jason Tyler Rolfe code -1
Do Deep Convolutional Nets Really Need to be Deep and Convolutional? Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Özlem Aslan, Shengjie Wang, Abdelrahman Mohamed, Matthai Philipose, Matthew Richardson, Rich Caruana code -1
Geometry of Polysemy Jiaqi Mu, Suma Bhat, Pramod Viswanath code -1
Learning Invariant Representations Of Planar Curves Gautam Pai, Aaron Wetzler, Ron Kimmel code -1
Reasoning with Memory Augmented Neural Networks for Language Comprehension Tsendsuren Munkhdalai, Hong Yu code -1
Learning Recurrent Representations for Hierarchical Behavior Modeling Eyrun Eyjolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona code -1
Adversarial Machine Learning at Scale Alexey Kurakin, Ian J. Goodfellow, Samy Bengio code -1
Predicting Medications from Diagnostic Codes with Recurrent Neural Networks Jacek M. Bajor, Thomas A. Lasko code -1
Recurrent Mixture Density Network for Spatiotemporal Visual Attention Loris Bazzani, Hugo Larochelle, Lorenzo Torresani code -1
Inductive Bias of Deep Convolutional Networks through Pooling Geometry Nadav Cohen, Amnon Shashua code -1
Efficient Representation of Low-Dimensional Manifolds using Deep Networks Ronen Basri, David W. Jacobs code -1
Semi-Supervised Classification with Graph Convolutional Networks Thomas N. Kipf, Max Welling code -1
Sparsely-Connected Neural Networks: Towards Efficient VLSI Implementation of Deep Neural Networks Arash Ardakani, Carlo Condo, Warren J. Gross code -1
Adversarial Training Methods for Semi-Supervised Text Classification Takeru Miyato, Andrew M. Dai, Ian J. Goodfellow code -1
Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, Yoav Goldberg code -1
Pointer Sentinel Mixture Models Stephen Merity, Caiming Xiong, James Bradbury, Richard Socher code -1
An Actor-Critic Algorithm for Sequence Prediction Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C. Courville, Yoshua Bengio code -1
Understanding Trainable Sparse Coding with Matrix Factorization Thomas Moreau, Joan Bruna code -1
Tighter bounds lead to improved classifiers Nicolas Le Roux code -1
HolStep: A Machine Learning Dataset for Higher-order Logic Theorem Proving Cezary Kaliszyk, François Chollet, Christian Szegedy code -1
Why Deep Neural Networks for Function Approximation? Shiyu Liang, R. Srikant code -1
Hierarchical Multiscale Recurrent Neural Networks Junyoung Chung, Sungjin Ahn, Yoshua Bengio code -1
Neural Photo Editing with Introspective Adversarial Networks Andrew Brock, Theodore Lim, James M. Ritchie, Nick Weston code -1
Dropout with Expectation-linear Regularization Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu, Yuntian Deng, Eduard H. Hovy code -1
HyperNetworks David Ha, Andrew M. Dai, Quoc V. Le code -1
A Learned Representation For Artistic Style Vincent Dumoulin, Manjunath Kudlur code -1
Hadamard Product for Low-rank Bilinear Pooling JinHwa Kim, Kyoung Woon On, Woosang Lim, Jeonghee Kim, JungWoo Ha, ByoungTak Zhang code -1