Skip to content

Latest commit

 

History

History
407 lines (406 loc) · 132 KB

nips2015.md

File metadata and controls

407 lines (406 loc) · 132 KB

NIPS2015 Paper List

论文 作者 摘要 代码 引用数
Double or Nothing: Multiplicative Incentive Mechanisms for Crowdsourcing Nihar Bhadresh Shah, Denny Zhou code -1
Learning with Symmetric Label Noise: The Importance of Being Unhinged Brendan van Rooyen, Aditya Krishna Menon, Robert C. Williamson code -1
Algorithmic Stability and Uniform Generalization Ibrahim M. Alabdulmohsin code -1
Adaptive Low-Complexity Sequential Inference for Dirichlet Process Mixture Models Theodoros Tsiligkaridis, Keith W. Forsythe code -1
Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling Xiaocheng Shang, Zhanxing Zhu, Benedict J. Leimkuhler, Amos J. Storkey code -1
Robust Portfolio Optimization Huitong Qiu, Fang Han, Han Liu, Brian Caffo code -1
Logarithmic Time Online Multiclass prediction Anna Choromanska, John Langford code -1
Planar Ultrametrics for Image Segmentation Julian Yarkony, Charless C. Fowlkes code -1
Expressing an Image Stream with a Sequence of Natural Sentences Cesc C. Park, Gunhee Kim code -1
Parallel Correlation Clustering on Big Graphs Xinghao Pan, Dimitris S. Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan Ramchandran, Michael I. Jordan code -1
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross B. Girshick, Jian Sun code -1
Space-Time Local Embeddings Ke Sun, Jun Wang, Alexandros Kalousis, Stéphane MarchandMaillet code -1
A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements Qinqing Zheng, John D. Lafferty code -1
Smooth Interactive Submodular Set Cover Bryan D. He, Yisong Yue code -1
Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning Jiajun Wu, Ilker Yildirim, Joseph J. Lim, Bill Freeman, Joshua B. Tenenbaum code -1
On the Pseudo-Dimension of Nearly Optimal Auctions Jamie Morgenstern, Tim Roughgarden code -1
Unlocking neural population non-stationarities using hierarchical dynamics models Mijung Park, Gergo Bohner, Jakob H. Macke code -1
Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM) Mijung Park, Wittawat Jitkrittum, Ahmad Qamar, Zoltán Szabó, Lars Buesing, Maneesh Sahani code -1
Color Constancy by Learning to Predict Chromaticity from Luminance Ayan Chakrabarti code -1
Fast and Accurate Inference of Plackett-Luce Models Lucas Maystre, Matthias Grossglauser code -1
Probabilistic Line Searches for Stochastic Optimization Maren Mahsereci, Philipp Hennig code -1
Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets Armand Joulin, Tomás Mikolov code -1
Where are they looking? Adrià Recasens, Aditya Khosla, Carl Vondrick, Antonio Torralba code -1
The Pareto Regret Frontier for Bandits Tor Lattimore code -1
On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank-One Perturbations of Gaussian Tensors Andrea Montanari, Daniel Reichman, Ofer Zeitouni code -1
Measuring Sample Quality with Stein's Method Jackson Gorham, Lester W. Mackey code -1
Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution Yan Huang, Wei Wang, Liang Wang code -1
Bounding errors of Expectation-Propagation Guillaume P. Dehaene, Simon Barthelmé code -1
A fast, universal algorithm to learn parametric nonlinear embeddings Miguel Á. CarreiraPerpiñán, Max Vladymyrov code -1
Texture Synthesis Using Convolutional Neural Networks Leon A. Gatys, Alexander S. Ecker, Matthias Bethge code -1
Extending Gossip Algorithms to Distributed Estimation of U-statistics Igor Colin, Aurélien Bellet, Joseph Salmon, Stéphan Clémençon code -1
Streaming, Distributed Variational Inference for Bayesian Nonparametrics Trevor Campbell, Julian Straub, John W. Fisher III, Jonathan P. How code -1
Learning visual biases from human imagination Carl Vondrick, Hamed Pirsiavash, Aude Oliva, Antonio Torralba code -1
Smooth and Strong: MAP Inference with Linear Convergence Ofer Meshi, Mehrdad Mahdavi, Alexander G. Schwing code -1
Copeland Dueling Bandits Masrour Zoghi, Zohar S. Karnin, Shimon Whiteson, Maarten de Rijke code -1
Optimal Ridge Detection using Coverage Risk YenChi Chen, Christopher R. Genovese, Shirley Ho, Larry A. Wasserman code -1
Top-k Multiclass SVM Maksim Lapin, Matthias Hein, Bernt Schiele code -1
Policy Evaluation Using the Ω-Return Philip S. Thomas, Scott Niekum, Georgios Theocharous, George Dimitri Konidaris code -1
Orthogonal NMF through Subspace Exploration Megasthenis Asteris, Dimitris S. Papailiopoulos, Alexandros G. Dimakis code -1
Stochastic Online Greedy Learning with Semi-bandit Feedbacks Tian Lin, Jian Li, Wei Chen code -1
Deeply Learning the Messages in Message Passing Inference Guosheng Lin, Chunhua Shen, Ian D. Reid, Anton van den Hengel code -1
Synaptic Sampling: A Bayesian Approach to Neural Network Plasticity and Rewiring David Kappel, Stefan Habenschuss, Robert Legenstein, Wolfgang Maass code -1
Accelerated Proximal Gradient Methods for Nonconvex Programming Huan Li, Zhouchen Lin code -1
Approximating Sparse PCA from Incomplete Data Abhisek Kundu, Petros Drineas, Malik MagdonIsmail code -1
Nonparametric von Mises Estimators for Entropies, Divergences and Mutual Informations Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabás Póczos, Larry A. Wasserman, James M. Robins code -1
Column Selection via Adaptive Sampling Saurabh Paul, Malik MagdonIsmail, Petros Drineas code -1
HONOR: Hybrid Optimization for NOn-convex Regularized problems Pinghua Gong, Jieping Ye code -1
3D Object Proposals for Accurate Object Class Detection Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G. Berneshawi, Huimin Ma, Sanja Fidler, Raquel Urtasun code -1
Algorithms with Logarithmic or Sublinear Regret for Constrained Contextual Bandits Huasen Wu, R. Srikant, Xin Liu, Chong Jiang code -1
Tensorizing Neural Networks Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry P. Vetrov code -1
Parallelizing MCMC with Random Partition Trees Xiangyu Wang, Fangjian Guo, Katherine A. Heller, David B. Dunson code -1
A Reduced-Dimension fMRI Shared Response Model PoHsuan Chen, Janice Chen, Yaara Yeshurun, Uri Hasson, James V. Haxby, Peter J. Ramadge code -1
Spectral Learning of Large Structured HMMs for Comparative Epigenomics Chicheng Zhang, Jimin Song, Kamalika Chaudhuri, Kevin C. Chen code -1
Individual Planning in Infinite-Horizon Multiagent Settings: Inference, Structure and Scalability Xia Qu, Prashant Doshi code -1
Estimating Mixture Models via Mixtures of Polynomials Sida Wang, Arun Tejasvi Chaganty, Percy Liang code -1
On the Global Linear Convergence of Frank-Wolfe Optimization Variants Simon LacosteJulien, Martin Jaggi code -1
Deep Knowledge Tracing Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J. Guibas, Jascha SohlDickstein code -1
Rethinking LDA: Moment Matching for Discrete ICA Anastasia Podosinnikova, Francis R. Bach, Simon LacosteJulien code -1
Efficient Compressive Phase Retrieval with Constrained Sensing Vectors Sohail Bahmani, Justin K. Romberg code -1
Barrier Frank-Wolfe for Marginal Inference Rahul G. Krishnan, Simon LacosteJulien, David A. Sontag code -1
Learning Theory and Algorithms for Forecasting Non-stationary Time Series Vitaly Kuznetsov, Mehryar Mohri code -1
Compressive spectral embedding: sidestepping the SVD Dinesh Ramasamy, Upamanyu Madhow code -1
A Nonconvex Optimization Framework for Low Rank Matrix Estimation Tuo Zhao, Zhaoran Wang, Han Liu code -1
Automatic Variational Inference in Stan Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, David M. Blei code -1
Attention-Based Models for Speech Recognition Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio code -1
Closed-form Estimators for High-dimensional Generalized Linear Models Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar code -1
Online F-Measure Optimization Róbert BusaFekete, Balázs Szörényi, Krzysztof Dembczynski, Eyke Hüllermeier code -1
Online Rank Elicitation for Plackett-Luce: A Dueling Bandits Approach Balázs Szörényi, Róbert BusaFekete, Adil Paul, Eyke Hüllermeier code -1
M-Best-Diverse Labelings for Submodular Energies and Beyond Alexander Kirillov, Dmytro Shlezinger, Dmitry P. Vetrov, Carsten Rother, Bogdan Savchynskyy code -1
Tractable Bayesian Network Structure Learning with Bounded Vertex Cover Number Janne H. Korhonen, Pekka Parviainen code -1
Learning Large-Scale Poisson DAG Models based on OverDispersion Scoring Gunwoong Park, Garvesh Raskutti code -1
Training Restricted Boltzmann Machine via the Thouless-Anderson-Palmer free energy Marylou Gabrié, Eric W. Tramel, Florent Krzakala code -1
Character-level Convolutional Networks for Text Classification Xiang Zhang, Junbo Jake Zhao, Yann LeCun code -1
Robust Feature-Sample Linear Discriminant Analysis for Brain Disorders Diagnosis Ehsan AdeliMosabbeb, KimHan Thung, Le An, Feng Shi, Dinggang Shen code -1
Black-box optimization of noisy functions with unknown smoothness JeanBastien Grill, Michal Valko, Rémi Munos code -1
Recovering Communities in the General Stochastic Block Model Without Knowing the Parameters Emmanuel Abbe, Colin Sandon code -1
Deep learning with Elastic Averaging SGD Sixin Zhang, Anna Choromanska, Yann LeCun code -1
Monotone k-Submodular Function Maximization with Size Constraints Naoto Ohsaka, Yuichi Yoshida code -1
Active Learning from Weak and Strong Labelers Chicheng Zhang, Kamalika Chaudhuri code -1
On the Optimality of Classifier Chain for Multi-label Classification Weiwei Liu, Ivor W. Tsang code -1
Robust Regression via Hard Thresholding Kush Bhatia, Prateek Jain, Purushottam Kar code -1
Sparse Local Embeddings for Extreme Multi-label Classification Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, Prateek Jain code -1
Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems Yuxin Chen, Emmanuel J. Candès code -1
A Framework for Individualizing Predictions of Disease Trajectories by Exploiting Multi-Resolution Structure Peter Schulam, Suchi Saria code -1
Subspace Clustering with Irrelevant Features via Robust Dantzig Selector Chao Qu, Huan Xu code -1
Sparse PCA via Bipartite Matchings Megasthenis Asteris, Dimitris S. Papailiopoulos, Anastasios Kyrillidis, Alexandros G. Dimakis code -1
Fast Randomized Kernel Ridge Regression with Statistical Guarantees Ahmed El Alaoui, Michael W. Mahoney code -1
Online Learning for Adversaries with Memory: Price of Past Mistakes Oren Anava, Elad Hazan, Shie Mannor code -1
Convolutional spike-triggered covariance analysis for neural subunit models Anqi Wu, Il Memming Park, Jonathan W. Pillow code -1
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting Xingjian Shi, Zhourong Chen, Hao Wang, DitYan Yeung, WaiKin Wong, Wangchun Woo code -1
GAP Safe screening rules for sparse multi-task and multi-class models Eugène Ndiaye, Olivier Fercoq, Alexandre Gramfort, Joseph Salmon code -1
Empirical Localization of Homogeneous Divergences on Discrete Sample Spaces Takashi Takenouchi, Takafumi Kanamori code -1
Statistical Model Criticism using Kernel Two Sample Tests James Robert Lloyd, Zoubin Ghahramani code -1
Precision-Recall-Gain Curves: PR Analysis Done Right Peter A. Flach, Meelis Kull code -1
A Generalization of Submodular Cover via the Diminishing Return Property on the Integer Lattice Tasuku Soma, Yuichi Yoshida code -1
Bidirectional Recurrent Neural Networks as Generative Models Mathias Berglund, Tapani Raiko, Mikko Honkala, Leo Kärkkäinen, Akos Vetek, Juha Karhunen code -1
Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling Zheng Qu, Peter Richtárik, Tong Zhang code -1
Maximum Likelihood Learning With Arbitrary Treewidth via Fast-Mixing Parameter Sets Justin Domke code -1
Hessian-free Optimization for Learning Deep Multidimensional Recurrent Neural Networks Minhyung Cho, Chandra Shekhar Dhir, Jaehyung Lee code -1
Large-scale probabilistic predictors with and without guarantees of validity Vladimir Vovk, Ivan Petej, Valentina Fedorova code -1
Shepard Convolutional Neural Networks Jimmy S. J. Ren, Li Xu, Qiong Yan, Wenxiu Sun code -1
Matrix Manifold Optimization for Gaussian Mixtures Reshad Hosseini, Suvrit Sra code -1
Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding Rie Johnson, Tong Zhang code -1
Parallel Recursive Best-First AND/OR Search for Exact MAP Inference in Graphical Models Akihiro Kishimoto, Radu Marinescu, Adi Botea code -1
Convolutional Neural Networks with Intra-Layer Recurrent Connections for Scene Labeling Ming Liang, Xiaolin Hu, Bo Zhang code -1
Bounding the Cost of Search-Based Lifted Inference David B. Smith, Vibhav Gogate code -1
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families Heiko Strathmann, Dino Sejdinovic, Samuel Livingstone, Zoltán Szabó, Arthur Gretton code -1
Linear Multi-Resource Allocation with Semi-Bandit Feedback Tor Lattimore, Koby Crammer, Csaba Szepesvári code -1
Unsupervised Learning by Program Synthesis Kevin Ellis, Armando SolarLezama, Joshua B. Tenenbaum code -1
Enforcing balance allows local supervised learning in spiking recurrent networks Ralph Bourdoukan, Sophie Denève code -1
Fast and Guaranteed Tensor Decomposition via Sketching Yining Wang, HsiaoYu Fish Tung, Alexander J. Smola, Anima Anandkumar code -1
Differentially private subspace clustering Yining Wang, YuXiang Wang, Aarti Singh code -1
Predtron: A Family of Online Algorithms for General Prediction Problems Prateek Jain, Nagarajan Natarajan, Ambuj Tewari code -1
Weighted Theta Functions and Embeddings with Applications to Max-Cut, Clustering and Summarization Fredrik D. Johansson, Ankani Chattoraj, Chiranjib Bhattacharyya, Devdatt P. Dubhashi code -1
SGD Algorithms based on Incomplete U-statistics: Large-Scale Minimization of Empirical Risk Guillaume Papa, Stéphan Clémençon, Aurélien Bellet code -1
On Top-k Selection in Multi-Armed Bandits and Hidden Bipartite Graphs Wei Cao, Jian Li, Yufei Tao, Zhize Li code -1
The Brain Uses Reliability of Stimulus Information when Making Perceptual Decisions Sebastian Bitzer, Stefan J. Kiebel code -1
Fast Classification Rates for High-dimensional Gaussian Generative Models Tianyang Li, Adarsh Prasad, Pradeep Ravikumar code -1
Fast Distributed k-Center Clustering with Outliers on Massive Data Gustavo Malkomes, Matt J. Kusner, Wenlin Chen, Kilian Q. Weinberger, Benjamin Moseley code -1
Human Memory Search as Initial-Visit Emitting Random Walk KwangSung Jun, Xiaojin Zhu, Timothy T. Rogers, Zhuoran Yang, Ming Yuan code -1
Non-convex Statistical Optimization for Sparse Tensor Graphical Model Wei Sun, Zhaoran Wang, Han Liu, Guang Cheng code -1
Convergence Rates of Active Learning for Maximum Likelihood Estimation Kamalika Chaudhuri, Sham M. Kakade, Praneeth Netrapalli, Sujay Sanghavi code -1
Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis Jimei Yang, Scott E. Reed, MingHsuan Yang, Honglak Lee code -1
Efficient Exact Gradient Update for training Deep Networks with Very Large Sparse Targets Pascal Vincent, Alexandre de Brébisson, Xavier Bouthillier code -1
Backpropagation for Energy-Efficient Neuromorphic Computing Steven K. Esser, Rathinakumar Appuswamy, Paul Merolla, John V. Arthur, Dharmendra S. Modha code -1
Alternating Minimization for Regression Problems with Vector-valued Outputs Prateek Jain, Ambuj Tewari code -1
Learning both Weights and Connections for Efficient Neural Network Song Han, Jeff Pool, John Tran, William J. Dally code -1
Optimal Rates for Random Fourier Features Bharath K. Sriperumbudur, Zoltán Szabó code -1
The Population Posterior and Bayesian Modeling on Streams James McInerney, Rajesh Ranganath, David M. Blei code -1
Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees FrançoisXavier Briol, Chris J. Oates, Mark A. Girolami, Michael A. Osborne code -1
Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer code -1
Unified View of Matrix Completion under General Structural Constraints Suriya Gunasekar, Arindam Banerjee, Joydeep Ghosh code -1
Efficient Output Kernel Learning for Multiple Tasks Pratik Jawanpuria, Maksim Lapin, Matthias Hein, Bernt Schiele code -1
Scalable Adaptation of State Complexity for Nonparametric Hidden Markov Models Michael C. Hughes, William T. Stephenson, Erik B. Sudderth code -1
Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan code -1
Newton-Stein Method: A Second Order Method for GLMs via Stein's Lemma Murat A. Erdogdu code -1
Practical and Optimal LSH for Angular Distance Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, Ludwig Schmidt code -1
Learning to Linearize Under Uncertainty Ross Goroshin, Michaël Mathieu, Yann LeCun code -1
Finite-Time Analysis of Projected Langevin Monte Carlo Sébastien Bubeck, Ronen Eldan, Joseph Lehec code -1
Deep Visual Analogy-Making Scott E. Reed, Yi Zhang, Yuting Zhang, Honglak Lee code -1
Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation Alaa Saade, Florent Krzakala, Lenka Zdeborová code -1
Online Learning with Adversarial Delays Kent Quanrud, Daniel Khashabi code -1
Multi-Layer Feature Reduction for Tree Structured Group Lasso via Hierarchical Projection Jie Wang, Jieping Ye code -1
Minimum Weight Perfect Matching via Blossom Belief Propagation Sungsoo Ahn, Sejun Park, Michael Chertkov, Jinwoo Shin code -1
Efficient Thompson Sampling for Online Matrix-Factorization Recommendation Jaya Kawale, Hung Hai Bui, Branislav Kveton, Long TranThanh, Sanjay Chawla code -1
Improved Iteration Complexity Bounds of Cyclic Block Coordinate Descent for Convex Problems Ruoyu Sun, Mingyi Hong code -1
Lifted Symmetry Detection and Breaking for MAP Inference Timothy Kopp, Parag Singla, Henry A. Kautz code -1
Evaluating the statistical significance of biclusters Jason D. Lee, Yuekai Sun, Jonathan E. Taylor code -1
Discriminative Robust Transformation Learning Jiaji Huang, Qiang Qiu, Guillermo Sapiro, A. Robert Calderbank code -1
Bandits with Unobserved Confounders: A Causal Approach Elias Bareinboim, Andrew Forney, Judea Pearl code -1
Scalable Semi-Supervised Aggregation of Classifiers Akshay Balsubramani, Yoav Freund code -1
Online Learning with Gaussian Payoffs and Side Observations Yifan Wu, András György, Csaba Szepesvári code -1
Private Graphon Estimation for Sparse Graphs Christian Borgs, Jennifer T. Chayes, Adam D. Smith code -1
SubmodBoxes: Near-Optimal Search for a Set of Diverse Object Proposals Qing Sun, Dhruv Batra code -1
Fast Second Order Stochastic Backpropagation for Variational Inference Kai Fan, Ziteng Wang, Jeffrey M. Beck, James T. Kwok, Katherine A. Heller code -1
Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition Cameron Musco, Christopher Musco code -1
Cross-Domain Matching for Bag-of-Words Data via Kernel Embeddings of Latent Distributions Yuya Yoshikawa, Tomoharu Iwata, Hiroshi Sawada, Takeshi Yamada code -1
Scalable Inference for Gaussian Process Models with Black-Box Likelihoods Amir Dezfouli, Edwin V. Bonilla code -1
Fast Bidirectional Probability Estimation in Markov Models Siddhartha Banerjee, Peter Lofgren code -1
Probabilistic Variational Bounds for Graphical Models Qiang Liu, John W. Fisher III, Alexander Ihler code -1
Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes Ryan Giordano, Tamara Broderick, Michael I. Jordan code -1
Combinatorial Cascading Bandits Branislav Kveton, Zheng Wen, Azin Ashkan, Csaba Szepesvári code -1
Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path Daniel J. Hsu, Aryeh Kontorovich, Csaba Szepesvári code -1
Policy Gradient for Coherent Risk Measures Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, Shie Mannor code -1
Fast Rates for Exp-concave Empirical Risk Minimization Tomer Koren, Kfir Y. Levy code -1
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Emily L. Denton, Soumith Chintala, Arthur Szlam, Rob Fergus code -1
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Seunghoon Hong, Hyeonwoo Noh, Bohyung Han code -1
Equilibrated adaptive learning rates for non-convex optimization Yann N. Dauphin, Harm de Vries, Yoshua Bengio code -1
BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions Dominik Rothenhäusler, Christina Heinze, Jonas Peters, Nicolai Meinshausen code -1
Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach Yinlam Chow, Aviv Tamar, Shie Mannor, Marco Pavone code -1
Asynchronous stochastic convex optimization: the noise is in the noise and SGD don't care Sorathan Chaturapruek, John C. Duchi, Christopher Ré code -1
Lifelong Learning with Non-i.i.d. Tasks Anastasia Pentina, Christoph H. Lampert code -1
Optimal Linear Estimation under Unknown Nonlinear Transform Xinyang Yi, Zhaoran Wang, Constantine Caramanis, Han Liu code -1
Learning with Group Invariant Features: A Kernel Perspective Youssef Mroueh, Stephen Voinea, Tomaso A. Poggio code -1
Regularized EM Algorithms: A Unified Framework and Statistical Guarantees Xinyang Yi, Constantine Caramanis code -1
Distributionally Robust Logistic Regression Soroosh ShafieezadehAbadeh, Peyman Mohajerin Esfahani, Daniel Kuhn code -1
Adaptive Stochastic Optimization: From Sets to Paths Zhan Wei Lim, David Hsu, Wee Sun Lee code -1
Beyond Convexity: Stochastic Quasi-Convex Optimization Elad Hazan, Kfir Y. Levy, Shai ShalevShwartz code -1
A Tractable Approximation to Optimal Point Process Filtering: Application to Neural Encoding Yuval Harel, Ron Meir, Manfred Opper code -1
Sum-of-Squares Lower Bounds for Sparse PCA Tengyu Ma, Avi Wigderson code -1
Max-Margin Majority Voting for Learning from Crowds Tian Tian, Jun Zhu code -1
Learning with Incremental Iterative Regularization Lorenzo Rosasco, Silvia Villa code -1
Halting in Random Walk Kernels Mahito Sugiyama, Karsten M. Borgwardt code -1
MCMC for Variationally Sparse Gaussian Processes James Hensman, Alexander G. de G. Matthews, Maurizio Filippone, Zoubin Ghahramani code -1
Less is More: Nyström Computational Regularization Alessandro Rudi, Raffaello Camoriano, Lorenzo Rosasco code -1
Infinite Factorial Dynamical Model Isabel Valera, Francisco J. R. Ruiz, Lennart Svensson, Fernando PérezCruz code -1
Regularization Path of Cross-Validation Error Lower Bounds Atsushi Shibagaki, Yoshiki Suzuki, Masayuki Karasuyama, Ichiro Takeuchi code -1
Attractor Network Dynamics Enable Preplay and Rapid Path Planning in Maze-like Environments Dane S. Corneil, Wulfram Gerstner code -1
Teaching Machines to Read and Comprehend Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, Phil Blunsom code -1
Principal Differences Analysis: Interpretable Characterization of Differences between Distributions Jonas Mueller, Tommi S. Jaakkola code -1
When are Kalman-Filter Restless Bandits Indexable? Christopher R. Dance, Tomi Silander code -1
Segregated Graphs and Marginals of Chain Graph Models Ilya Shpitser code -1
Efficient Non-greedy Optimization of Decision Trees Mohammad Norouzi, Maxwell D. Collins, Matthew Johnson, David J. Fleet, Pushmeet Kohli code -1
Probabilistic Curve Learning: Coulomb Repulsion and the Electrostatic Gaussian Process Ye Wang, David B. Dunson code -1
Inverse Reinforcement Learning with Locally Consistent Reward Functions Quoc Phong Nguyen, Kian Hsiang Low, Patrick Jaillet code -1
Communication Complexity of Distributed Convex Learning and Optimization Yossi Arjevani, Ohad Shamir code -1
End-to-end Learning of LDA by Mirror-Descent Back Propagation over a Deep Architecture Jianshu Chen, Ji He, Yelong Shen, Lin Xiao, Xiaodong He, Jianfeng Gao, Xinying Song, Li Deng code -1
Subset Selection by Pareto Optimization Chao Qian, Yang Yu, ZhiHua Zhou code -1
On the Accuracy of Self-Normalized Log-Linear Models Jacob Andreas, Maxim Rabinovich, Michael I. Jordan, Dan Klein code -1
Regret Lower Bound and Optimal Algorithm in Finite Stochastic Partial Monitoring Junpei Komiyama, Junya Honda, Hiroshi Nakagawa code -1
Is Approval Voting Optimal Given Approval Votes? Ariel D. Procaccia, Nisarg Shah code -1
Regressive Virtual Metric Learning Michaël Perrot, Amaury Habrard code -1
Analysis of Robust PCA via Local Incoherence Huishuai Zhang, Yi Zhou, Yingbin Liang code -1
Learning to Transduce with Unbounded Memory Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, Phil Blunsom code -1
Max-Margin Deep Generative Models Chongxuan Li, Jun Zhu, Tianlin Shi, Bo Zhang code -1
Spherical Random Features for Polynomial Kernels Jeffrey Pennington, Felix X. Yu, Sanjiv Kumar code -1
Rectified Factor Networks DjorkArné Clevert, Andreas Mayr, Thomas Unterthiner, Sepp Hochreiter code -1
Learning Bayesian Networks with Thousands of Variables Mauro Scanagatta, Cassio P. de Campos, Giorgio Corani, Marco Zaffalon code -1
Matrix Completion Under Monotonic Single Index Models Ravi Sastry Ganti Mahapatruni, Laura Balzano, Rebecca Willett code -1
Visalogy: Answering Visual Analogy Questions Fereshteh Sadeghi, C. Lawrence Zitnick, Ali Farhadi code -1
Tree-Guided MCMC Inference for Normalized Random Measure Mixture Models Juho Lee, Seungjin Choi code -1
Streaming Min-max Hypergraph Partitioning Dan Alistarh, Jennifer Iglesias, Milan Vojnovic code -1
Collaboratively Learning Preferences from Ordinal Data Sewoong Oh, Kiran Koshy Thekumparampil, Jiaming Xu code -1
Biologically Inspired Dynamic Textures for Probing Motion Perception Jonathan Vacher, Andrew Isaac Meso, Laurent U. Perrinet, Gabriel Peyré code -1
Generative Image Modeling Using Spatial LSTMs Lucas Theis, Matthias Bethge code -1
Robust PCA with compressed data Wooseok Ha, Rina Foygel Barber code -1
Sampling from Probabilistic Submodular Models Alkis Gotovos, S. Hamed Hassani, Andreas Krause code -1
COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution Mehrdad Farajtabar, Yichen Wang, Manuel GomezRodriguez, Shuang Li, Hongyuan Zha, Le Song code -1
Supervised Learning for Dynamical System Learning Ahmed Hefny, Carlton Downey, Geoffrey J. Gordon code -1
Regret-Based Pruning in Extensive-Form Games Noam Brown, Tuomas Sandholm code -1
Fast Two-Sample Testing with Analytic Representations of Probability Measures Kacper Chwialkowski, Aaditya Ramdas, Dino Sejdinovic, Arthur Gretton code -1
Learning to Segment Object Candidates Pedro H. O. Pinheiro, Ronan Collobert, Piotr Dollár code -1
GP Kernels for Cross-Spectrum Analysis Kyle R. Ulrich, David E. Carlson, Kafui Dzirasa, Lawrence Carin code -1
Secure Multi-party Differential Privacy Peter Kairouz, Sewoong Oh, Pramod Viswanath code -1
Spatial Transformer Networks Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu code -1
Anytime Influence Bounds and the Explosive Behavior of Continuous-Time Diffusion Networks Kevin Scaman, Rémi Lemonnier, Nicolas Vayatis code -1
Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms Yunwen Lei, Ürün Dogan, Alexander Binder, Marius Kloft code -1
High-dimensional neural spike train analysis with generalized count linear dynamical systems Yuanjun Gao, Lars Buesing, Krishna V. Shenoy, John P. Cunningham code -1
Learning with a Wasserstein Loss Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio ArayaPolo, Tomaso A. Poggio code -1
b-bit Marginal Regression Martin Slawski, Ping Li code -1
Natural Neural Networks Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, Koray Kavukcuoglu code -1
Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference Edward Meeds, Max Welling code -1
Adaptive Primal-Dual Splitting Methods for Statistical Learning and Image Processing Tom Goldstein, Min Li, Xiaoming Yuan code -1
On some provably correct cases of variational inference for topic models Pranjal Awasthi, Andrej Risteski code -1
Collaborative Filtering with Graph Information: Consistency and Scalable Methods Nikhil Rao, HsiangFu Yu, Pradeep Ravikumar, Inderjit S. Dhillon code -1
Combinatorial Bandits Revisited Richard Combes, Mohammad Sadegh Talebi, Alexandre Proutière, Marc Lelarge code -1
Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning Shakir Mohamed, Danilo Jimenez Rezende code -1
A Structural Smoothing Framework For Robust Graph Comparison Pinar Yanardag, S. V. N. Vishwanathan code -1
Competitive Distribution Estimation: Why is Good-Turing Good Alon Orlitsky, Ananda Theertha Suresh code -1
Efficient Learning by Directed Acyclic Graph For Resource Constrained Prediction Joseph Wang, Kirill Trapeznikov, Venkatesh Saligrama code -1
A hybrid sampler for Poisson-Kingman mixture models Maria Lomeli, Stefano Favaro, Yee Whye Teh code -1
An Active Learning Framework using Sparse-Graph Codes for Sparse Polynomials and Graph Sketching Xiao Li, Kannan Ramchandran code -1
Local Smoothness in Variance Reduced Optimization Daniel Vainsencher, Han Liu, Tong Zhang code -1
Saliency, Scale and Information: Towards a Unifying Theory Shafin Rahman, Neil D. B. Bruce code -1
Fighting Bandits with a New Kind of Smoothness Jacob D. Abernethy, Chansoo Lee, Ambuj Tewari code -1
Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs Vidyashankar Sivakumar, Arindam Banerjee, Pradeep Ravikumar code -1
Spectral Norm Regularization of Orthonormal Representations for Graph Transduction Rakesh Shivanna, Bibaswan K. Chatterjee, Raman Sankaran, Chiranjib Bhattacharyya, Francis R. Bach code -1
Convolutional Networks on Graphs for Learning Molecular Fingerprints David Duvenaud, Dougal Maclaurin, Jorge AguileraIparraguirre, Rafael GómezBombarelli, Timothy Hirzel, Alán AspuruGuzik, Ryan P. Adams code -1
Mixed Robust/Average Submodular Partitioning: Fast Algorithms, Guarantees, and Applications Kai Wei, Rishabh K. Iyer, Shengjie Wang, Wenruo Bai, Jeff A. Bilmes code -1
Tractable Learning for Complex Probability Queries Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, Guy Van den Broeck code -1
StopWasting My Gradients: Practical SVRG Reza Babanezhad, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Konecný, Scott Sallinen code -1
Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction Been Kim, Julie A. Shah, Finale DoshiVelez code -1
A Normative Theory of Adaptive Dimensionality Reduction in Neural Networks Cengiz Pehlevan, Dmitri B. Chklovskii code -1
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators Changyou Chen, Nan Ding, Lawrence Carin code -1
Learning structured densities via infinite dimensional exponential families Siqi Sun, Mladen Kolar, Jinbo Xu code -1
Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, Wei Xu code -1
Variance Reduced Stochastic Gradient Descent with Neighbors Thomas Hofmann, Aurélien Lucchi, Simon LacosteJulien, Brian McWilliams code -1
Sample Efficient Path Integral Control under Uncertainty Yunpeng Pan, Evangelos A. Theodorou, Michail Kontitsis code -1
Stochastic Expectation Propagation Yingzhen Li, José Miguel HernándezLobato, Richard E. Turner code -1
Exactness of Approximate MAP Inference in Continuous MRFs Nicholas Ruozzi code -1
Scale Up Nonlinear Component Analysis with Doubly Stochastic Gradients Bo Xie, Yingyu Liang, Le Song code -1
Generalization in Adaptive Data Analysis and Holdout Reuse Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, Aaron Roth code -1
Market Scoring Rules Act As Opinion Pools For Risk-Averse Agents Mithun Chakraborty, Sanmay Das code -1
Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent Ian EnHsu Yen, Kai Zhong, ChoJui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon code -1
Training Very Deep Networks Rupesh Kumar Srivastava, Klaus Greff, Jürgen Schmidhuber code -1
Bayesian Active Model Selection with an Application to Automated Audiometry Jacob R. Gardner, Gustavo Malkomes, Roman Garnett, Kilian Q. Weinberger, Dennis L. Barbour, John P. Cunningham code -1
Particle Gibbs for Infinite Hidden Markov Models Nilesh Tripuraneni, Shixiang Gu, Hong Ge, Zoubin Ghahramani code -1
Learning spatiotemporal trajectories from manifold-valued longitudinal data JeanBaptiste Schiratti, Stéphanie Allassonnière, Olivier Colliot, Stanley Durrleman code -1
A Bayesian Framework for Modeling Confidence in Perceptual Decision Making Koosha Khalvati, Rajesh P. Rao code -1
Path-SGD: Path-Normalized Optimization in Deep Neural Networks Behnam Neyshabur, Ruslan Salakhutdinov, Nathan Srebro code -1
On the consistency theory of high dimensional variable screening Xiangyu Wang, Chenlei Leng, David B. Dunson code -1
End-To-End Memory Networks Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus code -1
Spectral Representations for Convolutional Neural Networks Oren Rippel, Jasper Snoek, Ryan P. Adams code -1
Online Gradient Boosting Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo code -1
Deep Temporal Sigmoid Belief Networks for Sequence Modeling Zhe Gan, Chunyuan Li, Ricardo Henao, David E. Carlson, Lawrence Carin code -1
Recognizing retinal ganglion cells in the dark Emile Richard, Georges Goetz, E. J. Chichilnisky code -1
A Theory of Decision Making Under Dynamic Context Michael Shvartsman, Vaibhav Srivastava, Jonathan D. Cohen code -1
A Gaussian Process Model of Quasar Spectral Energy Distributions Andrew C. Miller, Albert Wu, Jeffrey Regier, Jon McAuliffe, Dustin Lang, Prabhat, David Schlegel, Ryan P. Adams code -1
Hidden Technical Debt in Machine Learning Systems D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, JeanFrançois Crespo, Dan Dennison code -1
Local Causal Discovery of Direct Causes and Effects Tian Gao, Qiang Ji code -1
High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality Zhaoran Wang, Quanquan Gu, Yang Ning, Han Liu code -1
Revenue Optimization against Strategic Buyers Mehryar Mohri, Andres Muñoz Medina code -1
Deep Convolutional Inverse Graphics Network Tejas D. Kulkarni, William F. Whitney, Pushmeet Kohli, Joshua B. Tenenbaum code -1
Sparse and Low-Rank Tensor Decomposition Parikshit Shah, Nikhil Rao, Gongguo Tang code -1
Minimax Time Series Prediction Wouter M. Koolen, Alan Malek, Peter L. Bartlett, Yasin AbbasiYadkori code -1
Differentially Private Learning of Structured Discrete Distributions Ilias Diakonikolas, Moritz Hardt, Ludwig Schmidt code -1
Variational Dropout and the Local Reparameterization Trick Diederik P. Kingma, Tim Salimans, Max Welling code -1
Sample Complexity of Learning Mahalanobis Distance Metrics Nakul Verma, Kristin Branson code -1
Learning Wake-Sleep Recurrent Attention Models Jimmy Ba, Ruslan Salakhutdinov, Roger B. Grosse, Brendan J. Frey code -1
Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso Eunho Yang, Aurélie C. Lozano code -1
Testing Closeness With Unequal Sized Samples Bhaswar B. Bhattacharya, Gregory Valiant code -1
Estimating Jaccard Index with Missing Observations: A Matrix Calibration Approach Wenye Li code -1
Neural Adaptive Sequential Monte Carlo Shixiang Gu, Zoubin Ghahramani, Richard E. Turner code -1
Local Expectation Gradients for Black Box Variational Inference Michalis K. Titsias, Miguel LázaroGredilla code -1
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, Alexander J. Smola code -1
NEXT: A System for Real-World Development, Evaluation, and Application of Active Learning Kevin G. Jamieson, Lalit Jain, Chris Fernandez, Nicholas J. Glattard, Robert D. Nowak code -1
Super-Resolution Off the Grid Qingqing Huang, Sham M. Kakade code -1
Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms Christopher De Sa, Ce Zhang, Kunle Olukotun, Christopher Ré code -1
The Return of the Gating Network: Combining Generative Models and Discriminative Training in Natural Image Priors Dan Rosenbaum, Yair Weiss code -1
Pointer Networks Oriol Vinyals, Meire Fortunato, Navdeep Jaitly code -1
Associative Memory via a Sparse Recovery Model Arya Mazumdar, Ankit Singh Rawat code -1
Robust Spectral Inference for Joint Stochastic Matrix Factorization Moontae Lee, David Bindel, David M. Mimno code -1
Fast, Provable Algorithms for Isotonic Regression in all L_p-norms Rasmus Kyng, Anup Rao, Sushant Sachdeva code -1
Adversarial Prediction Games for Multivariate Losses Hong Wang, Wei Xing, Kaiser Asif, Brian D. Ziebart code -1
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization Xiangru Lian, Yijun Huang, Yuncheng Li, Ji Liu code -1
Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, Martin A. Riedmiller code -1
Efficient and Parsimonious Agnostic Active Learning TzuKuo Huang, Alekh Agarwal, Daniel J. Hsu, John Langford, Robert E. Schapire code -1
Softstar: Heuristic-Guided Probabilistic Inference Mathew Monfort, Brenden M. Lake, Brian D. Ziebart, Patrick Lucey, Joshua B. Tenenbaum code -1
Grammar as a Foreign Language Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, Geoffrey E. Hinton code -1
Regularization-Free Estimation in Trace Regression with Symmetric Positive Semidefinite Matrices Martin Slawski, Ping Li, Matthias Hein code -1
Winner-Take-All Autoencoders Alireza Makhzani, Brendan J. Frey code -1
Deep Poisson Factor Modeling Ricardo Henao, Zhe Gan, James Lu, Lawrence Carin code -1
Bayesian Optimization with Exponential Convergence Kenji Kawaguchi, Leslie Pack Kaelbling, Tomás LozanoPérez code -1
Sample Complexity of Episodic Fixed-Horizon Reinforcement Learning Christoph Dann, Emma Brunskill code -1
Learning with Relaxed Supervision Jacob Steinhardt, Percy Liang code -1
Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's Vitaly Feldman, Will Perkins, Santosh S. Vempala code -1
Accelerated Mirror Descent in Continuous and Discrete Time Walid Krichene, Alexandre M. Bayen, Peter L. Bartlett code -1
The Human Kernel Andrew Gordon Wilson, Christoph Dann, Christopher G. Lucas, Eric P. Xing code -1
Action-Conditional Video Prediction using Deep Networks in Atari Games Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, Satinder Singh code -1
A Pseudo-Euclidean Iteration for Optimal Recovery in Noisy ICA James R. Voss, Mikhail Belkin, Luis Rademacher code -1
Distributed Submodular Cover: Succinctly Summarizing Massive Data Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, Andreas Krause code -1
Community Detection via Measure Space Embedding Mark Kozdoba, Shie Mannor code -1
Basis refinement strategies for linear value function approximation in MDPs Gheorghe Comanici, Doina Precup, Prakash Panangaden code -1
Structured Estimation with Atomic Norms: General Bounds and Applications Sheng Chen, Arindam Banerjee code -1
A Complete Recipe for Stochastic Gradient MCMC YiAn Ma, Tianqi Chen, Emily B. Fox code -1
Bandit Smooth Convex Optimization: Improving the Bias-Variance Tradeoff Ofer Dekel, Ronen Eldan, Tomer Koren code -1
Online Prediction at the Limit of Zero Temperature Mark Herbster, Stephen Pasteris, Shaona Ghosh code -1
Learning Continuous Control Policies by Stochastic Value Gradients Nicolas Heess, Gregory Wayne, David Silver, Timothy P. Lillicrap, Tom Erez, Yuval Tassa code -1
Exploring Models and Data for Image Question Answering Mengye Ren, Ryan Kiros, Richard S. Zemel code -1
Efficient and Robust Automated Machine Learning Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, Frank Hutter code -1
Preconditioned Spectral Descent for Deep Learning David E. Carlson, Edo Collins, YaPing Hsieh, Lawrence Carin, Volkan Cevher code -1
A Recurrent Latent Variable Model for Sequential Data Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, Yoshua Bengio code -1
Fast Convergence of Regularized Learning in Games Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, Robert E. Schapire code -1
Parallel Multi-Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation Marijn F. Stollenga, Wonmin Byeon, Marcus Liwicki, Jürgen Schmidhuber code -1
Reflection, Refraction, and Hamiltonian Monte Carlo Hadi Mohasel Afshar, Justin Domke code -1
The Consistency of Common Neighbors for Link Prediction in Stochastic Blockmodels Purnamrita Sarkar, Deepayan Chakrabarti, Peter J. Bickel code -1
Nearly Optimal Private LASSO Kunal Talwar, Abhradeep Thakurta, Li Zhang code -1
Convergence Analysis of Prediction Markets via Randomized Subspace Descent Rafael M. Frongillo, Mark D. Reid code -1
The Poisson Gamma Belief Network Mingyuan Zhou, Yulai Cong, Bo Chen code -1
Convergence rates of sub-sampled Newton methods Murat A. Erdogdu, Andrea Montanari code -1
No-Regret Learning in Bayesian Games Jason D. Hartline, Vasilis Syrgkanis, Éva Tardos code -1
Statistical Topological Data Analysis - A Kernel Perspective Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, Ulrich Bauer code -1
Semi-supervised Sequence Learning Andrew M. Dai, Quoc V. Le code -1
Structured Transforms for Small-Footprint Deep Learning Vikas Sindhwani, Tara N. Sainath, Sanjiv Kumar code -1
Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width Christopher De Sa, Ce Zhang, Kunle Olukotun, Christopher Ré code -1
Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm Qinqing Zheng, Ryota Tomioka code -1
Sample Complexity Bounds for Iterative Stochastic Policy Optimization Marin Kobilarov code -1
BinaryConnect: Training Deep Neural Networks with binary weights during propagations Matthieu Courbariaux, Yoshua Bengio, JeanPierre David code -1
Interactive Control of Diverse Complex Characters with Neural Networks Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, Emanuel Todorov code -1
Submodular Hamming Metrics Jennifer Gillenwater, Rishabh K. Iyer, Bethany Lusch, Rahul Kidambi, Jeff A. Bilmes code -1
A Universal Primal-Dual Convex Optimization Framework Alp Yurtsever, Quoc TranDinh, Volkan Cevher code -1
Learning From Small Samples: An Analysis of Simple Decision Heuristics Özgür Simsek, Marcus Buckmann code -1
Explore no more: Improved high-probability regret bounds for non-stochastic bandits Gergely Neu code -1
Fast and Memory Optimal Low-Rank Matrix Approximation SeYoung Yun, Marc Lelarge, Alexandre Proutière code -1
Learnability of Influence in Networks Harikrishna Narasimhan, David C. Parkes, Yaron Singer code -1
Learning Causal Graphs with Small Interventions Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G. Dimakis, Sriram Vishwanath code -1
Information-theoretic lower bounds for convex optimization with erroneous oracles Yaron Singer, Jan Vondrák code -1
Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial David I. Inouye, Pradeep Ravikumar, Inderjit S. Dhillon code -1
Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings Piyush Rai, Changwei Hu, Ricardo Henao, Lawrence Carin code -1
The Self-Normalized Estimator for Counterfactual Learning Adith Swaminathan, Thorsten Joachims code -1
Fast Lifted MAP Inference via Partitioning Somdeb Sarkhel, Parag Singla, Vibhav Gogate code -1
Data Generation as Sequential Decision Making Philip Bachman, Doina Precup code -1
On Elicitation Complexity Rafael M. Frongillo, Ian A. Kash code -1
Decomposition Bounds for Marginal MAP Wei Ping, Qiang Liu, Alexander Ihler code -1
Discrete Rényi Classifiers Meisam Razaviyayn, Farzan Farnia, David Tse code -1
A class of network models recoverable by spectral clustering Yali Wan, Marina Meila code -1
Skip-Thought Vectors Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio Torralba, Sanja Fidler code -1
Rate-Agnostic (Causal) Structure Learning Sergey M. Plis, David Danks, Cynthia Freeman, Vince D. Calhoun code -1
Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric Vivien Seguy, Marco Cuturi code -1
Consistent Multilabel Classification Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, Inderjit S. Dhillon code -1
Parallel Predictive Entropy Search for Batch Global Optimization of Expensive Objective Functions Amar Shah, Zoubin Ghahramani code -1
Cornering Stationary and Restless Mixing Bandits with Remix-UCB Julien Audiffren, Liva Ralaivola code -1
Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data Danilo Bzdok, Michael Eickenberg, Olivier Grisel, Bertrand Thirion, Gaël Varoquaux code -1
Gaussian Process Random Fields David A. Moore, Stuart J. Russell code -1
M-Statistic for Kernel Change-Point Detection Shuang Li, Yao Xie, Hanjun Dai, Le Song code -1
Adaptive Online Learning Dylan J. Foster, Alexander Rakhlin, Karthik Sridharan code -1
A Universal Catalyst for First-Order Optimization Hongzhou Lin, Julien Mairal, Zaïd Harchaoui code -1
Inference for determinantal point processes without spectral knowledge Rémi Bardenet, Michalis K. Titsias code -1
Kullback-Leibler Proximal Variational Inference Mohammad E. Khan, Pierre Baqué, François Fleuret, Pascal Fua code -1
Semi-Proximal Mirror-Prox for Nonsmooth Composite Minimization Niao He, Zaïd Harchaoui code -1
LASSO with Non-linear Measurements is Equivalent to One With Linear Measurements Christos Thrampoulidis, Ehsan Abbasi, Babak Hassibi code -1
From random walks to distances on unweighted graphs Tatsunori B. Hashimoto, Yi Sun, Tommi S. Jaakkola code -1
Bayesian dark knowledge Anoop Korattikara Balan, Vivek Rathod, Kevin P. Murphy, Max Welling code -1
Matrix Completion with Noisy Side Information KaiYang Chiang, ChoJui Hsieh, Inderjit S. Dhillon code -1
Dependent Multinomial Models Made Easy: Stick-Breaking with the Polya-gamma Augmentation Scott W. Linderman, Matthew J. Johnson, Ryan P. Adams code -1
On-the-Job Learning with Bayesian Decision Theory Keenon Werling, Arun Tejasvi Chaganty, Percy Liang, Christopher D. Manning code -1
Calibrated Structured Prediction Volodymyr Kuleshov, Percy Liang code -1
Learning Structured Output Representation using Deep Conditional Generative Models Kihyuk Sohn, Honglak Lee, Xinchen Yan code -1
Time-Sensitive Recommendation From Recurrent User Activities Nan Du, Yichen Wang, Niao He, Jimeng Sun, Le Song code -1
Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels Felipe A. Tobar, Thang D. Bui, Richard E. Turner code -1
A Market Framework for Eliciting Private Data Bo Waggoner, Rafael M. Frongillo, Jacob D. Abernethy code -1
Lifted Inference Rules With Constraints Happy Mittal, Anuj Mahajan, Vibhav Gogate, Parag Singla code -1
Gradient Estimation Using Stochastic Computation Graphs John Schulman, Nicolas Heess, Theophane Weber, Pieter Abbeel code -1
Model-Based Relative Entropy Stochastic Search Abbas Abdolmaleki, Rudolf Lioutikov, Jan Peters, Nuno Lau, Luís Paulo Reis, Gerhard Neumann code -1
Semi-supervised Learning with Ladder Networks Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, Tapani Raiko code -1
Embedding Inference for Structured Multilabel Prediction Farzaneh Mirzazadeh, Siamak Ravanbakhsh, Nan Ding, Dale Schuurmans code -1
Copula variational inference Dustin Tran, David M. Blei, Edoardo M. Airoldi code -1
Recursive Training of 2D-3D Convolutional Networks for Neuronal Boundary Prediction Kisuk Lee, Aleksandar Zlateski, Ashwin Vishwanathan, H. Sebastian Seung code -1
A Dual Augmented Block Minimization Framework for Learning with Limited Memory Ian EnHsu Yen, ShanWei Lin, ShouDe Lin code -1
Optimal Testing for Properties of Distributions Jayadev Acharya, Constantinos Daskalakis, Gautam Kamath code -1
Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression YuYing Liu, Shuang Li, Fuxin Li, Le Song, James M. Rehg code -1
Expectation Particle Belief Propagation Thibaut Liénart, Yee Whye Teh, Arnaud Doucet code -1
Latent Bayesian melding for integrating individual and population models Mingjun Zhong, Nigel H. Goddard, Charles Sutton code -1