Double or Nothing: Multiplicative Incentive Mechanisms for Crowdsourcing |
Nihar Bhadresh Shah, Denny Zhou |
|
code |
-1 |
Learning with Symmetric Label Noise: The Importance of Being Unhinged |
Brendan van Rooyen, Aditya Krishna Menon, Robert C. Williamson |
|
code |
-1 |
Algorithmic Stability and Uniform Generalization |
Ibrahim M. Alabdulmohsin |
|
code |
-1 |
Adaptive Low-Complexity Sequential Inference for Dirichlet Process Mixture Models |
Theodoros Tsiligkaridis, Keith W. Forsythe |
|
code |
-1 |
Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling |
Xiaocheng Shang, Zhanxing Zhu, Benedict J. Leimkuhler, Amos J. Storkey |
|
code |
-1 |
Robust Portfolio Optimization |
Huitong Qiu, Fang Han, Han Liu, Brian Caffo |
|
code |
-1 |
Logarithmic Time Online Multiclass prediction |
Anna Choromanska, John Langford |
|
code |
-1 |
Planar Ultrametrics for Image Segmentation |
Julian Yarkony, Charless C. Fowlkes |
|
code |
-1 |
Expressing an Image Stream with a Sequence of Natural Sentences |
Cesc C. Park, Gunhee Kim |
|
code |
-1 |
Parallel Correlation Clustering on Big Graphs |
Xinghao Pan, Dimitris S. Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan Ramchandran, Michael I. Jordan |
|
code |
-1 |
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks |
Shaoqing Ren, Kaiming He, Ross B. Girshick, Jian Sun |
|
code |
-1 |
Space-Time Local Embeddings |
Ke Sun, Jun Wang, Alexandros Kalousis, Stéphane MarchandMaillet |
|
code |
-1 |
A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements |
Qinqing Zheng, John D. Lafferty |
|
code |
-1 |
Smooth Interactive Submodular Set Cover |
Bryan D. He, Yisong Yue |
|
code |
-1 |
Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning |
Jiajun Wu, Ilker Yildirim, Joseph J. Lim, Bill Freeman, Joshua B. Tenenbaum |
|
code |
-1 |
On the Pseudo-Dimension of Nearly Optimal Auctions |
Jamie Morgenstern, Tim Roughgarden |
|
code |
-1 |
Unlocking neural population non-stationarities using hierarchical dynamics models |
Mijung Park, Gergo Bohner, Jakob H. Macke |
|
code |
-1 |
Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM) |
Mijung Park, Wittawat Jitkrittum, Ahmad Qamar, Zoltán Szabó, Lars Buesing, Maneesh Sahani |
|
code |
-1 |
Color Constancy by Learning to Predict Chromaticity from Luminance |
Ayan Chakrabarti |
|
code |
-1 |
Fast and Accurate Inference of Plackett-Luce Models |
Lucas Maystre, Matthias Grossglauser |
|
code |
-1 |
Probabilistic Line Searches for Stochastic Optimization |
Maren Mahsereci, Philipp Hennig |
|
code |
-1 |
Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets |
Armand Joulin, Tomás Mikolov |
|
code |
-1 |
Where are they looking? |
Adrià Recasens, Aditya Khosla, Carl Vondrick, Antonio Torralba |
|
code |
-1 |
The Pareto Regret Frontier for Bandits |
Tor Lattimore |
|
code |
-1 |
On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank-One Perturbations of Gaussian Tensors |
Andrea Montanari, Daniel Reichman, Ofer Zeitouni |
|
code |
-1 |
Measuring Sample Quality with Stein's Method |
Jackson Gorham, Lester W. Mackey |
|
code |
-1 |
Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution |
Yan Huang, Wei Wang, Liang Wang |
|
code |
-1 |
Bounding errors of Expectation-Propagation |
Guillaume P. Dehaene, Simon Barthelmé |
|
code |
-1 |
A fast, universal algorithm to learn parametric nonlinear embeddings |
Miguel Á. CarreiraPerpiñán, Max Vladymyrov |
|
code |
-1 |
Texture Synthesis Using Convolutional Neural Networks |
Leon A. Gatys, Alexander S. Ecker, Matthias Bethge |
|
code |
-1 |
Extending Gossip Algorithms to Distributed Estimation of U-statistics |
Igor Colin, Aurélien Bellet, Joseph Salmon, Stéphan Clémençon |
|
code |
-1 |
Streaming, Distributed Variational Inference for Bayesian Nonparametrics |
Trevor Campbell, Julian Straub, John W. Fisher III, Jonathan P. How |
|
code |
-1 |
Learning visual biases from human imagination |
Carl Vondrick, Hamed Pirsiavash, Aude Oliva, Antonio Torralba |
|
code |
-1 |
Smooth and Strong: MAP Inference with Linear Convergence |
Ofer Meshi, Mehrdad Mahdavi, Alexander G. Schwing |
|
code |
-1 |
Copeland Dueling Bandits |
Masrour Zoghi, Zohar S. Karnin, Shimon Whiteson, Maarten de Rijke |
|
code |
-1 |
Optimal Ridge Detection using Coverage Risk |
YenChi Chen, Christopher R. Genovese, Shirley Ho, Larry A. Wasserman |
|
code |
-1 |
Top-k Multiclass SVM |
Maksim Lapin, Matthias Hein, Bernt Schiele |
|
code |
-1 |
Policy Evaluation Using the Ω-Return |
Philip S. Thomas, Scott Niekum, Georgios Theocharous, George Dimitri Konidaris |
|
code |
-1 |
Orthogonal NMF through Subspace Exploration |
Megasthenis Asteris, Dimitris S. Papailiopoulos, Alexandros G. Dimakis |
|
code |
-1 |
Stochastic Online Greedy Learning with Semi-bandit Feedbacks |
Tian Lin, Jian Li, Wei Chen |
|
code |
-1 |
Deeply Learning the Messages in Message Passing Inference |
Guosheng Lin, Chunhua Shen, Ian D. Reid, Anton van den Hengel |
|
code |
-1 |
Synaptic Sampling: A Bayesian Approach to Neural Network Plasticity and Rewiring |
David Kappel, Stefan Habenschuss, Robert Legenstein, Wolfgang Maass |
|
code |
-1 |
Accelerated Proximal Gradient Methods for Nonconvex Programming |
Huan Li, Zhouchen Lin |
|
code |
-1 |
Approximating Sparse PCA from Incomplete Data |
Abhisek Kundu, Petros Drineas, Malik MagdonIsmail |
|
code |
-1 |
Nonparametric von Mises Estimators for Entropies, Divergences and Mutual Informations |
Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabás Póczos, Larry A. Wasserman, James M. Robins |
|
code |
-1 |
Column Selection via Adaptive Sampling |
Saurabh Paul, Malik MagdonIsmail, Petros Drineas |
|
code |
-1 |
HONOR: Hybrid Optimization for NOn-convex Regularized problems |
Pinghua Gong, Jieping Ye |
|
code |
-1 |
3D Object Proposals for Accurate Object Class Detection |
Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G. Berneshawi, Huimin Ma, Sanja Fidler, Raquel Urtasun |
|
code |
-1 |
Algorithms with Logarithmic or Sublinear Regret for Constrained Contextual Bandits |
Huasen Wu, R. Srikant, Xin Liu, Chong Jiang |
|
code |
-1 |
Tensorizing Neural Networks |
Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry P. Vetrov |
|
code |
-1 |
Parallelizing MCMC with Random Partition Trees |
Xiangyu Wang, Fangjian Guo, Katherine A. Heller, David B. Dunson |
|
code |
-1 |
A Reduced-Dimension fMRI Shared Response Model |
PoHsuan Chen, Janice Chen, Yaara Yeshurun, Uri Hasson, James V. Haxby, Peter J. Ramadge |
|
code |
-1 |
Spectral Learning of Large Structured HMMs for Comparative Epigenomics |
Chicheng Zhang, Jimin Song, Kamalika Chaudhuri, Kevin C. Chen |
|
code |
-1 |
Individual Planning in Infinite-Horizon Multiagent Settings: Inference, Structure and Scalability |
Xia Qu, Prashant Doshi |
|
code |
-1 |
Estimating Mixture Models via Mixtures of Polynomials |
Sida Wang, Arun Tejasvi Chaganty, Percy Liang |
|
code |
-1 |
On the Global Linear Convergence of Frank-Wolfe Optimization Variants |
Simon LacosteJulien, Martin Jaggi |
|
code |
-1 |
Deep Knowledge Tracing |
Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J. Guibas, Jascha SohlDickstein |
|
code |
-1 |
Rethinking LDA: Moment Matching for Discrete ICA |
Anastasia Podosinnikova, Francis R. Bach, Simon LacosteJulien |
|
code |
-1 |
Efficient Compressive Phase Retrieval with Constrained Sensing Vectors |
Sohail Bahmani, Justin K. Romberg |
|
code |
-1 |
Barrier Frank-Wolfe for Marginal Inference |
Rahul G. Krishnan, Simon LacosteJulien, David A. Sontag |
|
code |
-1 |
Learning Theory and Algorithms for Forecasting Non-stationary Time Series |
Vitaly Kuznetsov, Mehryar Mohri |
|
code |
-1 |
Compressive spectral embedding: sidestepping the SVD |
Dinesh Ramasamy, Upamanyu Madhow |
|
code |
-1 |
A Nonconvex Optimization Framework for Low Rank Matrix Estimation |
Tuo Zhao, Zhaoran Wang, Han Liu |
|
code |
-1 |
Automatic Variational Inference in Stan |
Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, David M. Blei |
|
code |
-1 |
Attention-Based Models for Speech Recognition |
Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio |
|
code |
-1 |
Closed-form Estimators for High-dimensional Generalized Linear Models |
Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar |
|
code |
-1 |
Online F-Measure Optimization |
Róbert BusaFekete, Balázs Szörényi, Krzysztof Dembczynski, Eyke Hüllermeier |
|
code |
-1 |
Online Rank Elicitation for Plackett-Luce: A Dueling Bandits Approach |
Balázs Szörényi, Róbert BusaFekete, Adil Paul, Eyke Hüllermeier |
|
code |
-1 |
M-Best-Diverse Labelings for Submodular Energies and Beyond |
Alexander Kirillov, Dmytro Shlezinger, Dmitry P. Vetrov, Carsten Rother, Bogdan Savchynskyy |
|
code |
-1 |
Tractable Bayesian Network Structure Learning with Bounded Vertex Cover Number |
Janne H. Korhonen, Pekka Parviainen |
|
code |
-1 |
Learning Large-Scale Poisson DAG Models based on OverDispersion Scoring |
Gunwoong Park, Garvesh Raskutti |
|
code |
-1 |
Training Restricted Boltzmann Machine via the Thouless-Anderson-Palmer free energy |
Marylou Gabrié, Eric W. Tramel, Florent Krzakala |
|
code |
-1 |
Character-level Convolutional Networks for Text Classification |
Xiang Zhang, Junbo Jake Zhao, Yann LeCun |
|
code |
-1 |
Robust Feature-Sample Linear Discriminant Analysis for Brain Disorders Diagnosis |
Ehsan AdeliMosabbeb, KimHan Thung, Le An, Feng Shi, Dinggang Shen |
|
code |
-1 |
Black-box optimization of noisy functions with unknown smoothness |
JeanBastien Grill, Michal Valko, Rémi Munos |
|
code |
-1 |
Recovering Communities in the General Stochastic Block Model Without Knowing the Parameters |
Emmanuel Abbe, Colin Sandon |
|
code |
-1 |
Deep learning with Elastic Averaging SGD |
Sixin Zhang, Anna Choromanska, Yann LeCun |
|
code |
-1 |
Monotone k-Submodular Function Maximization with Size Constraints |
Naoto Ohsaka, Yuichi Yoshida |
|
code |
-1 |
Active Learning from Weak and Strong Labelers |
Chicheng Zhang, Kamalika Chaudhuri |
|
code |
-1 |
On the Optimality of Classifier Chain for Multi-label Classification |
Weiwei Liu, Ivor W. Tsang |
|
code |
-1 |
Robust Regression via Hard Thresholding |
Kush Bhatia, Prateek Jain, Purushottam Kar |
|
code |
-1 |
Sparse Local Embeddings for Extreme Multi-label Classification |
Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, Prateek Jain |
|
code |
-1 |
Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems |
Yuxin Chen, Emmanuel J. Candès |
|
code |
-1 |
A Framework for Individualizing Predictions of Disease Trajectories by Exploiting Multi-Resolution Structure |
Peter Schulam, Suchi Saria |
|
code |
-1 |
Subspace Clustering with Irrelevant Features via Robust Dantzig Selector |
Chao Qu, Huan Xu |
|
code |
-1 |
Sparse PCA via Bipartite Matchings |
Megasthenis Asteris, Dimitris S. Papailiopoulos, Anastasios Kyrillidis, Alexandros G. Dimakis |
|
code |
-1 |
Fast Randomized Kernel Ridge Regression with Statistical Guarantees |
Ahmed El Alaoui, Michael W. Mahoney |
|
code |
-1 |
Online Learning for Adversaries with Memory: Price of Past Mistakes |
Oren Anava, Elad Hazan, Shie Mannor |
|
code |
-1 |
Convolutional spike-triggered covariance analysis for neural subunit models |
Anqi Wu, Il Memming Park, Jonathan W. Pillow |
|
code |
-1 |
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting |
Xingjian Shi, Zhourong Chen, Hao Wang, DitYan Yeung, WaiKin Wong, Wangchun Woo |
|
code |
-1 |
GAP Safe screening rules for sparse multi-task and multi-class models |
Eugène Ndiaye, Olivier Fercoq, Alexandre Gramfort, Joseph Salmon |
|
code |
-1 |
Empirical Localization of Homogeneous Divergences on Discrete Sample Spaces |
Takashi Takenouchi, Takafumi Kanamori |
|
code |
-1 |
Statistical Model Criticism using Kernel Two Sample Tests |
James Robert Lloyd, Zoubin Ghahramani |
|
code |
-1 |
Precision-Recall-Gain Curves: PR Analysis Done Right |
Peter A. Flach, Meelis Kull |
|
code |
-1 |
A Generalization of Submodular Cover via the Diminishing Return Property on the Integer Lattice |
Tasuku Soma, Yuichi Yoshida |
|
code |
-1 |
Bidirectional Recurrent Neural Networks as Generative Models |
Mathias Berglund, Tapani Raiko, Mikko Honkala, Leo Kärkkäinen, Akos Vetek, Juha Karhunen |
|
code |
-1 |
Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling |
Zheng Qu, Peter Richtárik, Tong Zhang |
|
code |
-1 |
Maximum Likelihood Learning With Arbitrary Treewidth via Fast-Mixing Parameter Sets |
Justin Domke |
|
code |
-1 |
Hessian-free Optimization for Learning Deep Multidimensional Recurrent Neural Networks |
Minhyung Cho, Chandra Shekhar Dhir, Jaehyung Lee |
|
code |
-1 |
Large-scale probabilistic predictors with and without guarantees of validity |
Vladimir Vovk, Ivan Petej, Valentina Fedorova |
|
code |
-1 |
Shepard Convolutional Neural Networks |
Jimmy S. J. Ren, Li Xu, Qiong Yan, Wenxiu Sun |
|
code |
-1 |
Matrix Manifold Optimization for Gaussian Mixtures |
Reshad Hosseini, Suvrit Sra |
|
code |
-1 |
Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding |
Rie Johnson, Tong Zhang |
|
code |
-1 |
Parallel Recursive Best-First AND/OR Search for Exact MAP Inference in Graphical Models |
Akihiro Kishimoto, Radu Marinescu, Adi Botea |
|
code |
-1 |
Convolutional Neural Networks with Intra-Layer Recurrent Connections for Scene Labeling |
Ming Liang, Xiaolin Hu, Bo Zhang |
|
code |
-1 |
Bounding the Cost of Search-Based Lifted Inference |
David B. Smith, Vibhav Gogate |
|
code |
-1 |
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families |
Heiko Strathmann, Dino Sejdinovic, Samuel Livingstone, Zoltán Szabó, Arthur Gretton |
|
code |
-1 |
Linear Multi-Resource Allocation with Semi-Bandit Feedback |
Tor Lattimore, Koby Crammer, Csaba Szepesvári |
|
code |
-1 |
Unsupervised Learning by Program Synthesis |
Kevin Ellis, Armando SolarLezama, Joshua B. Tenenbaum |
|
code |
-1 |
Enforcing balance allows local supervised learning in spiking recurrent networks |
Ralph Bourdoukan, Sophie Denève |
|
code |
-1 |
Fast and Guaranteed Tensor Decomposition via Sketching |
Yining Wang, HsiaoYu Fish Tung, Alexander J. Smola, Anima Anandkumar |
|
code |
-1 |
Differentially private subspace clustering |
Yining Wang, YuXiang Wang, Aarti Singh |
|
code |
-1 |
Predtron: A Family of Online Algorithms for General Prediction Problems |
Prateek Jain, Nagarajan Natarajan, Ambuj Tewari |
|
code |
-1 |
Weighted Theta Functions and Embeddings with Applications to Max-Cut, Clustering and Summarization |
Fredrik D. Johansson, Ankani Chattoraj, Chiranjib Bhattacharyya, Devdatt P. Dubhashi |
|
code |
-1 |
SGD Algorithms based on Incomplete U-statistics: Large-Scale Minimization of Empirical Risk |
Guillaume Papa, Stéphan Clémençon, Aurélien Bellet |
|
code |
-1 |
On Top-k Selection in Multi-Armed Bandits and Hidden Bipartite Graphs |
Wei Cao, Jian Li, Yufei Tao, Zhize Li |
|
code |
-1 |
The Brain Uses Reliability of Stimulus Information when Making Perceptual Decisions |
Sebastian Bitzer, Stefan J. Kiebel |
|
code |
-1 |
Fast Classification Rates for High-dimensional Gaussian Generative Models |
Tianyang Li, Adarsh Prasad, Pradeep Ravikumar |
|
code |
-1 |
Fast Distributed k-Center Clustering with Outliers on Massive Data |
Gustavo Malkomes, Matt J. Kusner, Wenlin Chen, Kilian Q. Weinberger, Benjamin Moseley |
|
code |
-1 |
Human Memory Search as Initial-Visit Emitting Random Walk |
KwangSung Jun, Xiaojin Zhu, Timothy T. Rogers, Zhuoran Yang, Ming Yuan |
|
code |
-1 |
Non-convex Statistical Optimization for Sparse Tensor Graphical Model |
Wei Sun, Zhaoran Wang, Han Liu, Guang Cheng |
|
code |
-1 |
Convergence Rates of Active Learning for Maximum Likelihood Estimation |
Kamalika Chaudhuri, Sham M. Kakade, Praneeth Netrapalli, Sujay Sanghavi |
|
code |
-1 |
Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis |
Jimei Yang, Scott E. Reed, MingHsuan Yang, Honglak Lee |
|
code |
-1 |
Efficient Exact Gradient Update for training Deep Networks with Very Large Sparse Targets |
Pascal Vincent, Alexandre de Brébisson, Xavier Bouthillier |
|
code |
-1 |
Backpropagation for Energy-Efficient Neuromorphic Computing |
Steven K. Esser, Rathinakumar Appuswamy, Paul Merolla, John V. Arthur, Dharmendra S. Modha |
|
code |
-1 |
Alternating Minimization for Regression Problems with Vector-valued Outputs |
Prateek Jain, Ambuj Tewari |
|
code |
-1 |
Learning both Weights and Connections for Efficient Neural Network |
Song Han, Jeff Pool, John Tran, William J. Dally |
|
code |
-1 |
Optimal Rates for Random Fourier Features |
Bharath K. Sriperumbudur, Zoltán Szabó |
|
code |
-1 |
The Population Posterior and Bayesian Modeling on Streams |
James McInerney, Rajesh Ranganath, David M. Blei |
|
code |
-1 |
Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees |
FrançoisXavier Briol, Chris J. Oates, Mark A. Girolami, Michael A. Osborne |
|
code |
-1 |
Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks |
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer |
|
code |
-1 |
Unified View of Matrix Completion under General Structural Constraints |
Suriya Gunasekar, Arindam Banerjee, Joydeep Ghosh |
|
code |
-1 |
Efficient Output Kernel Learning for Multiple Tasks |
Pratik Jawanpuria, Maksim Lapin, Matthias Hein, Bernt Schiele |
|
code |
-1 |
Scalable Adaptation of State Complexity for Nonparametric Hidden Markov Models |
Michael C. Hughes, William T. Stephenson, Erik B. Sudderth |
|
code |
-1 |
Variational Consensus Monte Carlo |
Maxim Rabinovich, Elaine Angelino, Michael I. Jordan |
|
code |
-1 |
Newton-Stein Method: A Second Order Method for GLMs via Stein's Lemma |
Murat A. Erdogdu |
|
code |
-1 |
Practical and Optimal LSH for Angular Distance |
Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, Ludwig Schmidt |
|
code |
-1 |
Learning to Linearize Under Uncertainty |
Ross Goroshin, Michaël Mathieu, Yann LeCun |
|
code |
-1 |
Finite-Time Analysis of Projected Langevin Monte Carlo |
Sébastien Bubeck, Ronen Eldan, Joseph Lehec |
|
code |
-1 |
Deep Visual Analogy-Making |
Scott E. Reed, Yi Zhang, Yuting Zhang, Honglak Lee |
|
code |
-1 |
Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation |
Alaa Saade, Florent Krzakala, Lenka Zdeborová |
|
code |
-1 |
Online Learning with Adversarial Delays |
Kent Quanrud, Daniel Khashabi |
|
code |
-1 |
Multi-Layer Feature Reduction for Tree Structured Group Lasso via Hierarchical Projection |
Jie Wang, Jieping Ye |
|
code |
-1 |
Minimum Weight Perfect Matching via Blossom Belief Propagation |
Sungsoo Ahn, Sejun Park, Michael Chertkov, Jinwoo Shin |
|
code |
-1 |
Efficient Thompson Sampling for Online Matrix-Factorization Recommendation |
Jaya Kawale, Hung Hai Bui, Branislav Kveton, Long TranThanh, Sanjay Chawla |
|
code |
-1 |
Improved Iteration Complexity Bounds of Cyclic Block Coordinate Descent for Convex Problems |
Ruoyu Sun, Mingyi Hong |
|
code |
-1 |
Lifted Symmetry Detection and Breaking for MAP Inference |
Timothy Kopp, Parag Singla, Henry A. Kautz |
|
code |
-1 |
Evaluating the statistical significance of biclusters |
Jason D. Lee, Yuekai Sun, Jonathan E. Taylor |
|
code |
-1 |
Discriminative Robust Transformation Learning |
Jiaji Huang, Qiang Qiu, Guillermo Sapiro, A. Robert Calderbank |
|
code |
-1 |
Bandits with Unobserved Confounders: A Causal Approach |
Elias Bareinboim, Andrew Forney, Judea Pearl |
|
code |
-1 |
Scalable Semi-Supervised Aggregation of Classifiers |
Akshay Balsubramani, Yoav Freund |
|
code |
-1 |
Online Learning with Gaussian Payoffs and Side Observations |
Yifan Wu, András György, Csaba Szepesvári |
|
code |
-1 |
Private Graphon Estimation for Sparse Graphs |
Christian Borgs, Jennifer T. Chayes, Adam D. Smith |
|
code |
-1 |
SubmodBoxes: Near-Optimal Search for a Set of Diverse Object Proposals |
Qing Sun, Dhruv Batra |
|
code |
-1 |
Fast Second Order Stochastic Backpropagation for Variational Inference |
Kai Fan, Ziteng Wang, Jeffrey M. Beck, James T. Kwok, Katherine A. Heller |
|
code |
-1 |
Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition |
Cameron Musco, Christopher Musco |
|
code |
-1 |
Cross-Domain Matching for Bag-of-Words Data via Kernel Embeddings of Latent Distributions |
Yuya Yoshikawa, Tomoharu Iwata, Hiroshi Sawada, Takeshi Yamada |
|
code |
-1 |
Scalable Inference for Gaussian Process Models with Black-Box Likelihoods |
Amir Dezfouli, Edwin V. Bonilla |
|
code |
-1 |
Fast Bidirectional Probability Estimation in Markov Models |
Siddhartha Banerjee, Peter Lofgren |
|
code |
-1 |
Probabilistic Variational Bounds for Graphical Models |
Qiang Liu, John W. Fisher III, Alexander Ihler |
|
code |
-1 |
Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes |
Ryan Giordano, Tamara Broderick, Michael I. Jordan |
|
code |
-1 |
Combinatorial Cascading Bandits |
Branislav Kveton, Zheng Wen, Azin Ashkan, Csaba Szepesvári |
|
code |
-1 |
Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path |
Daniel J. Hsu, Aryeh Kontorovich, Csaba Szepesvári |
|
code |
-1 |
Policy Gradient for Coherent Risk Measures |
Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, Shie Mannor |
|
code |
-1 |
Fast Rates for Exp-concave Empirical Risk Minimization |
Tomer Koren, Kfir Y. Levy |
|
code |
-1 |
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks |
Emily L. Denton, Soumith Chintala, Arthur Szlam, Rob Fergus |
|
code |
-1 |
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation |
Seunghoon Hong, Hyeonwoo Noh, Bohyung Han |
|
code |
-1 |
Equilibrated adaptive learning rates for non-convex optimization |
Yann N. Dauphin, Harm de Vries, Yoshua Bengio |
|
code |
-1 |
BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions |
Dominik Rothenhäusler, Christina Heinze, Jonas Peters, Nicolai Meinshausen |
|
code |
-1 |
Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach |
Yinlam Chow, Aviv Tamar, Shie Mannor, Marco Pavone |
|
code |
-1 |
Asynchronous stochastic convex optimization: the noise is in the noise and SGD don't care |
Sorathan Chaturapruek, John C. Duchi, Christopher Ré |
|
code |
-1 |
Lifelong Learning with Non-i.i.d. Tasks |
Anastasia Pentina, Christoph H. Lampert |
|
code |
-1 |
Optimal Linear Estimation under Unknown Nonlinear Transform |
Xinyang Yi, Zhaoran Wang, Constantine Caramanis, Han Liu |
|
code |
-1 |
Learning with Group Invariant Features: A Kernel Perspective |
Youssef Mroueh, Stephen Voinea, Tomaso A. Poggio |
|
code |
-1 |
Regularized EM Algorithms: A Unified Framework and Statistical Guarantees |
Xinyang Yi, Constantine Caramanis |
|
code |
-1 |
Distributionally Robust Logistic Regression |
Soroosh ShafieezadehAbadeh, Peyman Mohajerin Esfahani, Daniel Kuhn |
|
code |
-1 |
Adaptive Stochastic Optimization: From Sets to Paths |
Zhan Wei Lim, David Hsu, Wee Sun Lee |
|
code |
-1 |
Beyond Convexity: Stochastic Quasi-Convex Optimization |
Elad Hazan, Kfir Y. Levy, Shai ShalevShwartz |
|
code |
-1 |
A Tractable Approximation to Optimal Point Process Filtering: Application to Neural Encoding |
Yuval Harel, Ron Meir, Manfred Opper |
|
code |
-1 |
Sum-of-Squares Lower Bounds for Sparse PCA |
Tengyu Ma, Avi Wigderson |
|
code |
-1 |
Max-Margin Majority Voting for Learning from Crowds |
Tian Tian, Jun Zhu |
|
code |
-1 |
Learning with Incremental Iterative Regularization |
Lorenzo Rosasco, Silvia Villa |
|
code |
-1 |
Halting in Random Walk Kernels |
Mahito Sugiyama, Karsten M. Borgwardt |
|
code |
-1 |
MCMC for Variationally Sparse Gaussian Processes |
James Hensman, Alexander G. de G. Matthews, Maurizio Filippone, Zoubin Ghahramani |
|
code |
-1 |
Less is More: Nyström Computational Regularization |
Alessandro Rudi, Raffaello Camoriano, Lorenzo Rosasco |
|
code |
-1 |
Infinite Factorial Dynamical Model |
Isabel Valera, Francisco J. R. Ruiz, Lennart Svensson, Fernando PérezCruz |
|
code |
-1 |
Regularization Path of Cross-Validation Error Lower Bounds |
Atsushi Shibagaki, Yoshiki Suzuki, Masayuki Karasuyama, Ichiro Takeuchi |
|
code |
-1 |
Attractor Network Dynamics Enable Preplay and Rapid Path Planning in Maze-like Environments |
Dane S. Corneil, Wulfram Gerstner |
|
code |
-1 |
Teaching Machines to Read and Comprehend |
Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, Phil Blunsom |
|
code |
-1 |
Principal Differences Analysis: Interpretable Characterization of Differences between Distributions |
Jonas Mueller, Tommi S. Jaakkola |
|
code |
-1 |
When are Kalman-Filter Restless Bandits Indexable? |
Christopher R. Dance, Tomi Silander |
|
code |
-1 |
Segregated Graphs and Marginals of Chain Graph Models |
Ilya Shpitser |
|
code |
-1 |
Efficient Non-greedy Optimization of Decision Trees |
Mohammad Norouzi, Maxwell D. Collins, Matthew Johnson, David J. Fleet, Pushmeet Kohli |
|
code |
-1 |
Probabilistic Curve Learning: Coulomb Repulsion and the Electrostatic Gaussian Process |
Ye Wang, David B. Dunson |
|
code |
-1 |
Inverse Reinforcement Learning with Locally Consistent Reward Functions |
Quoc Phong Nguyen, Kian Hsiang Low, Patrick Jaillet |
|
code |
-1 |
Communication Complexity of Distributed Convex Learning and Optimization |
Yossi Arjevani, Ohad Shamir |
|
code |
-1 |
End-to-end Learning of LDA by Mirror-Descent Back Propagation over a Deep Architecture |
Jianshu Chen, Ji He, Yelong Shen, Lin Xiao, Xiaodong He, Jianfeng Gao, Xinying Song, Li Deng |
|
code |
-1 |
Subset Selection by Pareto Optimization |
Chao Qian, Yang Yu, ZhiHua Zhou |
|
code |
-1 |
On the Accuracy of Self-Normalized Log-Linear Models |
Jacob Andreas, Maxim Rabinovich, Michael I. Jordan, Dan Klein |
|
code |
-1 |
Regret Lower Bound and Optimal Algorithm in Finite Stochastic Partial Monitoring |
Junpei Komiyama, Junya Honda, Hiroshi Nakagawa |
|
code |
-1 |
Is Approval Voting Optimal Given Approval Votes? |
Ariel D. Procaccia, Nisarg Shah |
|
code |
-1 |
Regressive Virtual Metric Learning |
Michaël Perrot, Amaury Habrard |
|
code |
-1 |
Analysis of Robust PCA via Local Incoherence |
Huishuai Zhang, Yi Zhou, Yingbin Liang |
|
code |
-1 |
Learning to Transduce with Unbounded Memory |
Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, Phil Blunsom |
|
code |
-1 |
Max-Margin Deep Generative Models |
Chongxuan Li, Jun Zhu, Tianlin Shi, Bo Zhang |
|
code |
-1 |
Spherical Random Features for Polynomial Kernels |
Jeffrey Pennington, Felix X. Yu, Sanjiv Kumar |
|
code |
-1 |
Rectified Factor Networks |
DjorkArné Clevert, Andreas Mayr, Thomas Unterthiner, Sepp Hochreiter |
|
code |
-1 |
Learning Bayesian Networks with Thousands of Variables |
Mauro Scanagatta, Cassio P. de Campos, Giorgio Corani, Marco Zaffalon |
|
code |
-1 |
Matrix Completion Under Monotonic Single Index Models |
Ravi Sastry Ganti Mahapatruni, Laura Balzano, Rebecca Willett |
|
code |
-1 |
Visalogy: Answering Visual Analogy Questions |
Fereshteh Sadeghi, C. Lawrence Zitnick, Ali Farhadi |
|
code |
-1 |
Tree-Guided MCMC Inference for Normalized Random Measure Mixture Models |
Juho Lee, Seungjin Choi |
|
code |
-1 |
Streaming Min-max Hypergraph Partitioning |
Dan Alistarh, Jennifer Iglesias, Milan Vojnovic |
|
code |
-1 |
Collaboratively Learning Preferences from Ordinal Data |
Sewoong Oh, Kiran Koshy Thekumparampil, Jiaming Xu |
|
code |
-1 |
Biologically Inspired Dynamic Textures for Probing Motion Perception |
Jonathan Vacher, Andrew Isaac Meso, Laurent U. Perrinet, Gabriel Peyré |
|
code |
-1 |
Generative Image Modeling Using Spatial LSTMs |
Lucas Theis, Matthias Bethge |
|
code |
-1 |
Robust PCA with compressed data |
Wooseok Ha, Rina Foygel Barber |
|
code |
-1 |
Sampling from Probabilistic Submodular Models |
Alkis Gotovos, S. Hamed Hassani, Andreas Krause |
|
code |
-1 |
COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution |
Mehrdad Farajtabar, Yichen Wang, Manuel GomezRodriguez, Shuang Li, Hongyuan Zha, Le Song |
|
code |
-1 |
Supervised Learning for Dynamical System Learning |
Ahmed Hefny, Carlton Downey, Geoffrey J. Gordon |
|
code |
-1 |
Regret-Based Pruning in Extensive-Form Games |
Noam Brown, Tuomas Sandholm |
|
code |
-1 |
Fast Two-Sample Testing with Analytic Representations of Probability Measures |
Kacper Chwialkowski, Aaditya Ramdas, Dino Sejdinovic, Arthur Gretton |
|
code |
-1 |
Learning to Segment Object Candidates |
Pedro H. O. Pinheiro, Ronan Collobert, Piotr Dollár |
|
code |
-1 |
GP Kernels for Cross-Spectrum Analysis |
Kyle R. Ulrich, David E. Carlson, Kafui Dzirasa, Lawrence Carin |
|
code |
-1 |
Secure Multi-party Differential Privacy |
Peter Kairouz, Sewoong Oh, Pramod Viswanath |
|
code |
-1 |
Spatial Transformer Networks |
Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu |
|
code |
-1 |
Anytime Influence Bounds and the Explosive Behavior of Continuous-Time Diffusion Networks |
Kevin Scaman, Rémi Lemonnier, Nicolas Vayatis |
|
code |
-1 |
Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms |
Yunwen Lei, Ürün Dogan, Alexander Binder, Marius Kloft |
|
code |
-1 |
High-dimensional neural spike train analysis with generalized count linear dynamical systems |
Yuanjun Gao, Lars Buesing, Krishna V. Shenoy, John P. Cunningham |
|
code |
-1 |
Learning with a Wasserstein Loss |
Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio ArayaPolo, Tomaso A. Poggio |
|
code |
-1 |
b-bit Marginal Regression |
Martin Slawski, Ping Li |
|
code |
-1 |
Natural Neural Networks |
Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, Koray Kavukcuoglu |
|
code |
-1 |
Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference |
Edward Meeds, Max Welling |
|
code |
-1 |
Adaptive Primal-Dual Splitting Methods for Statistical Learning and Image Processing |
Tom Goldstein, Min Li, Xiaoming Yuan |
|
code |
-1 |
On some provably correct cases of variational inference for topic models |
Pranjal Awasthi, Andrej Risteski |
|
code |
-1 |
Collaborative Filtering with Graph Information: Consistency and Scalable Methods |
Nikhil Rao, HsiangFu Yu, Pradeep Ravikumar, Inderjit S. Dhillon |
|
code |
-1 |
Combinatorial Bandits Revisited |
Richard Combes, Mohammad Sadegh Talebi, Alexandre Proutière, Marc Lelarge |
|
code |
-1 |
Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning |
Shakir Mohamed, Danilo Jimenez Rezende |
|
code |
-1 |
A Structural Smoothing Framework For Robust Graph Comparison |
Pinar Yanardag, S. V. N. Vishwanathan |
|
code |
-1 |
Competitive Distribution Estimation: Why is Good-Turing Good |
Alon Orlitsky, Ananda Theertha Suresh |
|
code |
-1 |
Efficient Learning by Directed Acyclic Graph For Resource Constrained Prediction |
Joseph Wang, Kirill Trapeznikov, Venkatesh Saligrama |
|
code |
-1 |
A hybrid sampler for Poisson-Kingman mixture models |
Maria Lomeli, Stefano Favaro, Yee Whye Teh |
|
code |
-1 |
An Active Learning Framework using Sparse-Graph Codes for Sparse Polynomials and Graph Sketching |
Xiao Li, Kannan Ramchandran |
|
code |
-1 |
Local Smoothness in Variance Reduced Optimization |
Daniel Vainsencher, Han Liu, Tong Zhang |
|
code |
-1 |
Saliency, Scale and Information: Towards a Unifying Theory |
Shafin Rahman, Neil D. B. Bruce |
|
code |
-1 |
Fighting Bandits with a New Kind of Smoothness |
Jacob D. Abernethy, Chansoo Lee, Ambuj Tewari |
|
code |
-1 |
Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs |
Vidyashankar Sivakumar, Arindam Banerjee, Pradeep Ravikumar |
|
code |
-1 |
Spectral Norm Regularization of Orthonormal Representations for Graph Transduction |
Rakesh Shivanna, Bibaswan K. Chatterjee, Raman Sankaran, Chiranjib Bhattacharyya, Francis R. Bach |
|
code |
-1 |
Convolutional Networks on Graphs for Learning Molecular Fingerprints |
David Duvenaud, Dougal Maclaurin, Jorge AguileraIparraguirre, Rafael GómezBombarelli, Timothy Hirzel, Alán AspuruGuzik, Ryan P. Adams |
|
code |
-1 |
Mixed Robust/Average Submodular Partitioning: Fast Algorithms, Guarantees, and Applications |
Kai Wei, Rishabh K. Iyer, Shengjie Wang, Wenruo Bai, Jeff A. Bilmes |
|
code |
-1 |
Tractable Learning for Complex Probability Queries |
Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, Guy Van den Broeck |
|
code |
-1 |
StopWasting My Gradients: Practical SVRG |
Reza Babanezhad, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Konecný, Scott Sallinen |
|
code |
-1 |
Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction |
Been Kim, Julie A. Shah, Finale DoshiVelez |
|
code |
-1 |
A Normative Theory of Adaptive Dimensionality Reduction in Neural Networks |
Cengiz Pehlevan, Dmitri B. Chklovskii |
|
code |
-1 |
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators |
Changyou Chen, Nan Ding, Lawrence Carin |
|
code |
-1 |
Learning structured densities via infinite dimensional exponential families |
Siqi Sun, Mladen Kolar, Jinbo Xu |
|
code |
-1 |
Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question |
Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, Wei Xu |
|
code |
-1 |
Variance Reduced Stochastic Gradient Descent with Neighbors |
Thomas Hofmann, Aurélien Lucchi, Simon LacosteJulien, Brian McWilliams |
|
code |
-1 |
Sample Efficient Path Integral Control under Uncertainty |
Yunpeng Pan, Evangelos A. Theodorou, Michail Kontitsis |
|
code |
-1 |
Stochastic Expectation Propagation |
Yingzhen Li, José Miguel HernándezLobato, Richard E. Turner |
|
code |
-1 |
Exactness of Approximate MAP Inference in Continuous MRFs |
Nicholas Ruozzi |
|
code |
-1 |
Scale Up Nonlinear Component Analysis with Doubly Stochastic Gradients |
Bo Xie, Yingyu Liang, Le Song |
|
code |
-1 |
Generalization in Adaptive Data Analysis and Holdout Reuse |
Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, Aaron Roth |
|
code |
-1 |
Market Scoring Rules Act As Opinion Pools For Risk-Averse Agents |
Mithun Chakraborty, Sanmay Das |
|
code |
-1 |
Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent |
Ian EnHsu Yen, Kai Zhong, ChoJui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon |
|
code |
-1 |
Training Very Deep Networks |
Rupesh Kumar Srivastava, Klaus Greff, Jürgen Schmidhuber |
|
code |
-1 |
Bayesian Active Model Selection with an Application to Automated Audiometry |
Jacob R. Gardner, Gustavo Malkomes, Roman Garnett, Kilian Q. Weinberger, Dennis L. Barbour, John P. Cunningham |
|
code |
-1 |
Particle Gibbs for Infinite Hidden Markov Models |
Nilesh Tripuraneni, Shixiang Gu, Hong Ge, Zoubin Ghahramani |
|
code |
-1 |
Learning spatiotemporal trajectories from manifold-valued longitudinal data |
JeanBaptiste Schiratti, Stéphanie Allassonnière, Olivier Colliot, Stanley Durrleman |
|
code |
-1 |
A Bayesian Framework for Modeling Confidence in Perceptual Decision Making |
Koosha Khalvati, Rajesh P. Rao |
|
code |
-1 |
Path-SGD: Path-Normalized Optimization in Deep Neural Networks |
Behnam Neyshabur, Ruslan Salakhutdinov, Nathan Srebro |
|
code |
-1 |
On the consistency theory of high dimensional variable screening |
Xiangyu Wang, Chenlei Leng, David B. Dunson |
|
code |
-1 |
End-To-End Memory Networks |
Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus |
|
code |
-1 |
Spectral Representations for Convolutional Neural Networks |
Oren Rippel, Jasper Snoek, Ryan P. Adams |
|
code |
-1 |
Online Gradient Boosting |
Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo |
|
code |
-1 |
Deep Temporal Sigmoid Belief Networks for Sequence Modeling |
Zhe Gan, Chunyuan Li, Ricardo Henao, David E. Carlson, Lawrence Carin |
|
code |
-1 |
Recognizing retinal ganglion cells in the dark |
Emile Richard, Georges Goetz, E. J. Chichilnisky |
|
code |
-1 |
A Theory of Decision Making Under Dynamic Context |
Michael Shvartsman, Vaibhav Srivastava, Jonathan D. Cohen |
|
code |
-1 |
A Gaussian Process Model of Quasar Spectral Energy Distributions |
Andrew C. Miller, Albert Wu, Jeffrey Regier, Jon McAuliffe, Dustin Lang, Prabhat, David Schlegel, Ryan P. Adams |
|
code |
-1 |
Hidden Technical Debt in Machine Learning Systems |
D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, JeanFrançois Crespo, Dan Dennison |
|
code |
-1 |
Local Causal Discovery of Direct Causes and Effects |
Tian Gao, Qiang Ji |
|
code |
-1 |
High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality |
Zhaoran Wang, Quanquan Gu, Yang Ning, Han Liu |
|
code |
-1 |
Revenue Optimization against Strategic Buyers |
Mehryar Mohri, Andres Muñoz Medina |
|
code |
-1 |
Deep Convolutional Inverse Graphics Network |
Tejas D. Kulkarni, William F. Whitney, Pushmeet Kohli, Joshua B. Tenenbaum |
|
code |
-1 |
Sparse and Low-Rank Tensor Decomposition |
Parikshit Shah, Nikhil Rao, Gongguo Tang |
|
code |
-1 |
Minimax Time Series Prediction |
Wouter M. Koolen, Alan Malek, Peter L. Bartlett, Yasin AbbasiYadkori |
|
code |
-1 |
Differentially Private Learning of Structured Discrete Distributions |
Ilias Diakonikolas, Moritz Hardt, Ludwig Schmidt |
|
code |
-1 |
Variational Dropout and the Local Reparameterization Trick |
Diederik P. Kingma, Tim Salimans, Max Welling |
|
code |
-1 |
Sample Complexity of Learning Mahalanobis Distance Metrics |
Nakul Verma, Kristin Branson |
|
code |
-1 |
Learning Wake-Sleep Recurrent Attention Models |
Jimmy Ba, Ruslan Salakhutdinov, Roger B. Grosse, Brendan J. Frey |
|
code |
-1 |
Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso |
Eunho Yang, Aurélie C. Lozano |
|
code |
-1 |
Testing Closeness With Unequal Sized Samples |
Bhaswar B. Bhattacharya, Gregory Valiant |
|
code |
-1 |
Estimating Jaccard Index with Missing Observations: A Matrix Calibration Approach |
Wenye Li |
|
code |
-1 |
Neural Adaptive Sequential Monte Carlo |
Shixiang Gu, Zoubin Ghahramani, Richard E. Turner |
|
code |
-1 |
Local Expectation Gradients for Black Box Variational Inference |
Michalis K. Titsias, Miguel LázaroGredilla |
|
code |
-1 |
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants |
Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, Alexander J. Smola |
|
code |
-1 |
NEXT: A System for Real-World Development, Evaluation, and Application of Active Learning |
Kevin G. Jamieson, Lalit Jain, Chris Fernandez, Nicholas J. Glattard, Robert D. Nowak |
|
code |
-1 |
Super-Resolution Off the Grid |
Qingqing Huang, Sham M. Kakade |
|
code |
-1 |
Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms |
Christopher De Sa, Ce Zhang, Kunle Olukotun, Christopher Ré |
|
code |
-1 |
The Return of the Gating Network: Combining Generative Models and Discriminative Training in Natural Image Priors |
Dan Rosenbaum, Yair Weiss |
|
code |
-1 |
Pointer Networks |
Oriol Vinyals, Meire Fortunato, Navdeep Jaitly |
|
code |
-1 |
Associative Memory via a Sparse Recovery Model |
Arya Mazumdar, Ankit Singh Rawat |
|
code |
-1 |
Robust Spectral Inference for Joint Stochastic Matrix Factorization |
Moontae Lee, David Bindel, David M. Mimno |
|
code |
-1 |
Fast, Provable Algorithms for Isotonic Regression in all L_p-norms |
Rasmus Kyng, Anup Rao, Sushant Sachdeva |
|
code |
-1 |
Adversarial Prediction Games for Multivariate Losses |
Hong Wang, Wei Xing, Kaiser Asif, Brian D. Ziebart |
|
code |
-1 |
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization |
Xiangru Lian, Yijun Huang, Yuncheng Li, Ji Liu |
|
code |
-1 |
Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images |
Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, Martin A. Riedmiller |
|
code |
-1 |
Efficient and Parsimonious Agnostic Active Learning |
TzuKuo Huang, Alekh Agarwal, Daniel J. Hsu, John Langford, Robert E. Schapire |
|
code |
-1 |
Softstar: Heuristic-Guided Probabilistic Inference |
Mathew Monfort, Brenden M. Lake, Brian D. Ziebart, Patrick Lucey, Joshua B. Tenenbaum |
|
code |
-1 |
Grammar as a Foreign Language |
Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, Geoffrey E. Hinton |
|
code |
-1 |
Regularization-Free Estimation in Trace Regression with Symmetric Positive Semidefinite Matrices |
Martin Slawski, Ping Li, Matthias Hein |
|
code |
-1 |
Winner-Take-All Autoencoders |
Alireza Makhzani, Brendan J. Frey |
|
code |
-1 |
Deep Poisson Factor Modeling |
Ricardo Henao, Zhe Gan, James Lu, Lawrence Carin |
|
code |
-1 |
Bayesian Optimization with Exponential Convergence |
Kenji Kawaguchi, Leslie Pack Kaelbling, Tomás LozanoPérez |
|
code |
-1 |
Sample Complexity of Episodic Fixed-Horizon Reinforcement Learning |
Christoph Dann, Emma Brunskill |
|
code |
-1 |
Learning with Relaxed Supervision |
Jacob Steinhardt, Percy Liang |
|
code |
-1 |
Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's |
Vitaly Feldman, Will Perkins, Santosh S. Vempala |
|
code |
-1 |
Accelerated Mirror Descent in Continuous and Discrete Time |
Walid Krichene, Alexandre M. Bayen, Peter L. Bartlett |
|
code |
-1 |
The Human Kernel |
Andrew Gordon Wilson, Christoph Dann, Christopher G. Lucas, Eric P. Xing |
|
code |
-1 |
Action-Conditional Video Prediction using Deep Networks in Atari Games |
Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, Satinder Singh |
|
code |
-1 |
A Pseudo-Euclidean Iteration for Optimal Recovery in Noisy ICA |
James R. Voss, Mikhail Belkin, Luis Rademacher |
|
code |
-1 |
Distributed Submodular Cover: Succinctly Summarizing Massive Data |
Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, Andreas Krause |
|
code |
-1 |
Community Detection via Measure Space Embedding |
Mark Kozdoba, Shie Mannor |
|
code |
-1 |
Basis refinement strategies for linear value function approximation in MDPs |
Gheorghe Comanici, Doina Precup, Prakash Panangaden |
|
code |
-1 |
Structured Estimation with Atomic Norms: General Bounds and Applications |
Sheng Chen, Arindam Banerjee |
|
code |
-1 |
A Complete Recipe for Stochastic Gradient MCMC |
YiAn Ma, Tianqi Chen, Emily B. Fox |
|
code |
-1 |
Bandit Smooth Convex Optimization: Improving the Bias-Variance Tradeoff |
Ofer Dekel, Ronen Eldan, Tomer Koren |
|
code |
-1 |
Online Prediction at the Limit of Zero Temperature |
Mark Herbster, Stephen Pasteris, Shaona Ghosh |
|
code |
-1 |
Learning Continuous Control Policies by Stochastic Value Gradients |
Nicolas Heess, Gregory Wayne, David Silver, Timothy P. Lillicrap, Tom Erez, Yuval Tassa |
|
code |
-1 |
Exploring Models and Data for Image Question Answering |
Mengye Ren, Ryan Kiros, Richard S. Zemel |
|
code |
-1 |
Efficient and Robust Automated Machine Learning |
Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, Frank Hutter |
|
code |
-1 |
Preconditioned Spectral Descent for Deep Learning |
David E. Carlson, Edo Collins, YaPing Hsieh, Lawrence Carin, Volkan Cevher |
|
code |
-1 |
A Recurrent Latent Variable Model for Sequential Data |
Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, Yoshua Bengio |
|
code |
-1 |
Fast Convergence of Regularized Learning in Games |
Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, Robert E. Schapire |
|
code |
-1 |
Parallel Multi-Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation |
Marijn F. Stollenga, Wonmin Byeon, Marcus Liwicki, Jürgen Schmidhuber |
|
code |
-1 |
Reflection, Refraction, and Hamiltonian Monte Carlo |
Hadi Mohasel Afshar, Justin Domke |
|
code |
-1 |
The Consistency of Common Neighbors for Link Prediction in Stochastic Blockmodels |
Purnamrita Sarkar, Deepayan Chakrabarti, Peter J. Bickel |
|
code |
-1 |
Nearly Optimal Private LASSO |
Kunal Talwar, Abhradeep Thakurta, Li Zhang |
|
code |
-1 |
Convergence Analysis of Prediction Markets via Randomized Subspace Descent |
Rafael M. Frongillo, Mark D. Reid |
|
code |
-1 |
The Poisson Gamma Belief Network |
Mingyuan Zhou, Yulai Cong, Bo Chen |
|
code |
-1 |
Convergence rates of sub-sampled Newton methods |
Murat A. Erdogdu, Andrea Montanari |
|
code |
-1 |
No-Regret Learning in Bayesian Games |
Jason D. Hartline, Vasilis Syrgkanis, Éva Tardos |
|
code |
-1 |
Statistical Topological Data Analysis - A Kernel Perspective |
Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, Ulrich Bauer |
|
code |
-1 |
Semi-supervised Sequence Learning |
Andrew M. Dai, Quoc V. Le |
|
code |
-1 |
Structured Transforms for Small-Footprint Deep Learning |
Vikas Sindhwani, Tara N. Sainath, Sanjiv Kumar |
|
code |
-1 |
Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width |
Christopher De Sa, Ce Zhang, Kunle Olukotun, Christopher Ré |
|
code |
-1 |
Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm |
Qinqing Zheng, Ryota Tomioka |
|
code |
-1 |
Sample Complexity Bounds for Iterative Stochastic Policy Optimization |
Marin Kobilarov |
|
code |
-1 |
BinaryConnect: Training Deep Neural Networks with binary weights during propagations |
Matthieu Courbariaux, Yoshua Bengio, JeanPierre David |
|
code |
-1 |
Interactive Control of Diverse Complex Characters with Neural Networks |
Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, Emanuel Todorov |
|
code |
-1 |
Submodular Hamming Metrics |
Jennifer Gillenwater, Rishabh K. Iyer, Bethany Lusch, Rahul Kidambi, Jeff A. Bilmes |
|
code |
-1 |
A Universal Primal-Dual Convex Optimization Framework |
Alp Yurtsever, Quoc TranDinh, Volkan Cevher |
|
code |
-1 |
Learning From Small Samples: An Analysis of Simple Decision Heuristics |
Özgür Simsek, Marcus Buckmann |
|
code |
-1 |
Explore no more: Improved high-probability regret bounds for non-stochastic bandits |
Gergely Neu |
|
code |
-1 |
Fast and Memory Optimal Low-Rank Matrix Approximation |
SeYoung Yun, Marc Lelarge, Alexandre Proutière |
|
code |
-1 |
Learnability of Influence in Networks |
Harikrishna Narasimhan, David C. Parkes, Yaron Singer |
|
code |
-1 |
Learning Causal Graphs with Small Interventions |
Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G. Dimakis, Sriram Vishwanath |
|
code |
-1 |
Information-theoretic lower bounds for convex optimization with erroneous oracles |
Yaron Singer, Jan Vondrák |
|
code |
-1 |
Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial |
David I. Inouye, Pradeep Ravikumar, Inderjit S. Dhillon |
|
code |
-1 |
Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings |
Piyush Rai, Changwei Hu, Ricardo Henao, Lawrence Carin |
|
code |
-1 |
The Self-Normalized Estimator for Counterfactual Learning |
Adith Swaminathan, Thorsten Joachims |
|
code |
-1 |
Fast Lifted MAP Inference via Partitioning |
Somdeb Sarkhel, Parag Singla, Vibhav Gogate |
|
code |
-1 |
Data Generation as Sequential Decision Making |
Philip Bachman, Doina Precup |
|
code |
-1 |
On Elicitation Complexity |
Rafael M. Frongillo, Ian A. Kash |
|
code |
-1 |
Decomposition Bounds for Marginal MAP |
Wei Ping, Qiang Liu, Alexander Ihler |
|
code |
-1 |
Discrete Rényi Classifiers |
Meisam Razaviyayn, Farzan Farnia, David Tse |
|
code |
-1 |
A class of network models recoverable by spectral clustering |
Yali Wan, Marina Meila |
|
code |
-1 |
Skip-Thought Vectors |
Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio Torralba, Sanja Fidler |
|
code |
-1 |
Rate-Agnostic (Causal) Structure Learning |
Sergey M. Plis, David Danks, Cynthia Freeman, Vince D. Calhoun |
|
code |
-1 |
Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric |
Vivien Seguy, Marco Cuturi |
|
code |
-1 |
Consistent Multilabel Classification |
Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, Inderjit S. Dhillon |
|
code |
-1 |
Parallel Predictive Entropy Search for Batch Global Optimization of Expensive Objective Functions |
Amar Shah, Zoubin Ghahramani |
|
code |
-1 |
Cornering Stationary and Restless Mixing Bandits with Remix-UCB |
Julien Audiffren, Liva Ralaivola |
|
code |
-1 |
Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data |
Danilo Bzdok, Michael Eickenberg, Olivier Grisel, Bertrand Thirion, Gaël Varoquaux |
|
code |
-1 |
Gaussian Process Random Fields |
David A. Moore, Stuart J. Russell |
|
code |
-1 |
M-Statistic for Kernel Change-Point Detection |
Shuang Li, Yao Xie, Hanjun Dai, Le Song |
|
code |
-1 |
Adaptive Online Learning |
Dylan J. Foster, Alexander Rakhlin, Karthik Sridharan |
|
code |
-1 |
A Universal Catalyst for First-Order Optimization |
Hongzhou Lin, Julien Mairal, Zaïd Harchaoui |
|
code |
-1 |
Inference for determinantal point processes without spectral knowledge |
Rémi Bardenet, Michalis K. Titsias |
|
code |
-1 |
Kullback-Leibler Proximal Variational Inference |
Mohammad E. Khan, Pierre Baqué, François Fleuret, Pascal Fua |
|
code |
-1 |
Semi-Proximal Mirror-Prox for Nonsmooth Composite Minimization |
Niao He, Zaïd Harchaoui |
|
code |
-1 |
LASSO with Non-linear Measurements is Equivalent to One With Linear Measurements |
Christos Thrampoulidis, Ehsan Abbasi, Babak Hassibi |
|
code |
-1 |
From random walks to distances on unweighted graphs |
Tatsunori B. Hashimoto, Yi Sun, Tommi S. Jaakkola |
|
code |
-1 |
Bayesian dark knowledge |
Anoop Korattikara Balan, Vivek Rathod, Kevin P. Murphy, Max Welling |
|
code |
-1 |
Matrix Completion with Noisy Side Information |
KaiYang Chiang, ChoJui Hsieh, Inderjit S. Dhillon |
|
code |
-1 |
Dependent Multinomial Models Made Easy: Stick-Breaking with the Polya-gamma Augmentation |
Scott W. Linderman, Matthew J. Johnson, Ryan P. Adams |
|
code |
-1 |
On-the-Job Learning with Bayesian Decision Theory |
Keenon Werling, Arun Tejasvi Chaganty, Percy Liang, Christopher D. Manning |
|
code |
-1 |
Calibrated Structured Prediction |
Volodymyr Kuleshov, Percy Liang |
|
code |
-1 |
Learning Structured Output Representation using Deep Conditional Generative Models |
Kihyuk Sohn, Honglak Lee, Xinchen Yan |
|
code |
-1 |
Time-Sensitive Recommendation From Recurrent User Activities |
Nan Du, Yichen Wang, Niao He, Jimeng Sun, Le Song |
|
code |
-1 |
Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels |
Felipe A. Tobar, Thang D. Bui, Richard E. Turner |
|
code |
-1 |
A Market Framework for Eliciting Private Data |
Bo Waggoner, Rafael M. Frongillo, Jacob D. Abernethy |
|
code |
-1 |
Lifted Inference Rules With Constraints |
Happy Mittal, Anuj Mahajan, Vibhav Gogate, Parag Singla |
|
code |
-1 |
Gradient Estimation Using Stochastic Computation Graphs |
John Schulman, Nicolas Heess, Theophane Weber, Pieter Abbeel |
|
code |
-1 |
Model-Based Relative Entropy Stochastic Search |
Abbas Abdolmaleki, Rudolf Lioutikov, Jan Peters, Nuno Lau, Luís Paulo Reis, Gerhard Neumann |
|
code |
-1 |
Semi-supervised Learning with Ladder Networks |
Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, Tapani Raiko |
|
code |
-1 |
Embedding Inference for Structured Multilabel Prediction |
Farzaneh Mirzazadeh, Siamak Ravanbakhsh, Nan Ding, Dale Schuurmans |
|
code |
-1 |
Copula variational inference |
Dustin Tran, David M. Blei, Edoardo M. Airoldi |
|
code |
-1 |
Recursive Training of 2D-3D Convolutional Networks for Neuronal Boundary Prediction |
Kisuk Lee, Aleksandar Zlateski, Ashwin Vishwanathan, H. Sebastian Seung |
|
code |
-1 |
A Dual Augmented Block Minimization Framework for Learning with Limited Memory |
Ian EnHsu Yen, ShanWei Lin, ShouDe Lin |
|
code |
-1 |
Optimal Testing for Properties of Distributions |
Jayadev Acharya, Constantinos Daskalakis, Gautam Kamath |
|
code |
-1 |
Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression |
YuYing Liu, Shuang Li, Fuxin Li, Le Song, James M. Rehg |
|
code |
-1 |
Expectation Particle Belief Propagation |
Thibaut Liénart, Yee Whye Teh, Arnaud Doucet |
|
code |
-1 |
Latent Bayesian melding for integrating individual and population models |
Mingjun Zhong, Nigel H. Goddard, Charles Sutton |
|
code |
-1 |