Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much |
Bryan D. He, Christopher De Sa, Ioannis Mitliagkas, Christopher Ré |
|
code |
-1 |
Deep ADMM-Net for Compressive Sensing MRI |
Yan Yang, Jian Sun, Huibin Li, Zongben Xu |
|
code |
-1 |
A scaled Bregman theorem with applications |
Richard Nock, Aditya Krishna Menon, Cheng Soon Ong |
|
code |
-1 |
Swapout: Learning an ensemble of deep architectures |
Saurabh Singh, Derek Hoiem, David A. Forsyth |
|
code |
-1 |
On Regularizing Rademacher Observation Losses |
Richard Nock |
|
code |
-1 |
Without-Replacement Sampling for Stochastic Gradient Methods |
Ohad Shamir |
|
code |
-1 |
Fast and Provably Good Seedings for k-Means |
Olivier Bachem, Mario Lucic, Seyed Hamed Hassani, Andreas Krause |
|
code |
-1 |
Unsupervised Learning for Physical Interaction through Video Prediction |
Chelsea Finn, Ian J. Goodfellow, Sergey Levine |
|
code |
-1 |
High-Rank Matrix Completion and Clustering under Self-Expressive Models |
Ehsan Elhamifar |
|
code |
-1 |
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling |
Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, Josh Tenenbaum |
|
code |
-1 |
Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks |
Tianfan Xue, Jiajun Wu, Katherine L. Bouman, Bill Freeman |
|
code |
-1 |
Human Decision-Making under Limited Time |
Pedro A. Ortega, Alan A. Stocker |
|
code |
-1 |
Incremental Boosting Convolutional Neural Network for Facial Action Unit Recognition |
Shizhong Han, Zibo Meng, AhmedShehab Khan, Yan Tong |
|
code |
-1 |
Natural-Parameter Networks: A Class of Probabilistic Neural Networks |
Hao Wang, Xingjian Shi, DitYan Yeung |
|
code |
-1 |
Tree-Structured Reinforcement Learning for Sequential Object Localization |
Zequn Jie, Xiaodan Liang, Jiashi Feng, Xiaojie Jin, Wen Feng Lu, Shuicheng Yan |
|
code |
-1 |
Unsupervised Domain Adaptation with Residual Transfer Networks |
Mingsheng Long, Han Zhu, Jianmin Wang, Michael I. Jordan |
|
code |
-1 |
Verification Based Solution for Structured MAB Problems |
Zohar S. Karnin |
|
code |
-1 |
Minimizing Regret on Reflexive Banach Spaces and Nash Equilibria in Continuous Zero-Sum Games |
Maximilian Balandat, Walid Krichene, Claire J. Tomlin, Alexandre M. Bayen |
|
code |
-1 |
Linear dynamical neural population models through nonlinear embeddings |
Yuanjun Gao, Evan W. Archer, Liam Paninski, John P. Cunningham |
|
code |
-1 |
SURGE: Surface Regularized Geometry Estimation from a Single Image |
Peng Wang, Xiaohui Shen, Bryan C. Russell, Scott Cohen, Brian L. Price, Alan L. Yuille |
|
code |
-1 |
Interpretable Distribution Features with Maximum Testing Power |
Wittawat Jitkrittum, Zoltán Szabó, Kacper P. Chwialkowski, Arthur Gretton |
|
code |
-1 |
Sorting out typicality with the inverse moment matrix SOS polynomial |
Edouard Pauwels, Jean B. Lasserre |
|
code |
-1 |
Multi-armed Bandits: Competing with Optimal Sequences |
Zohar S. Karnin, Oren Anava |
|
code |
-1 |
Multivariate tests of association based on univariate tests |
Ruth Heller, Yair Heller |
|
code |
-1 |
Learning What and Where to Draw |
Scott E. Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee |
|
code |
-1 |
The Sound of APALM Clapping: Faster Nonsmooth Nonconvex Optimization with Stochastic Asynchronous PALM |
Damek Davis, Brent Edmunds, Madeleine Udell |
|
code |
-1 |
Integrated perception with recurrent multi-task neural networks |
Hakan Bilen, Andrea Vedaldi |
|
code |
-1 |
Learning from Small Sample Sets by Combining Unsupervised Meta-Training with CNNs |
YuXiong Wang, Martial Hebert |
|
code |
-1 |
CNNpack: Packing Convolutional Neural Networks in the Frequency Domain |
Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, Chao Xu |
|
code |
-1 |
Cooperative Graphical Models |
Josip Djolonga, Stefanie Jegelka, Sebastian Tschiatschek, Andreas Krause |
|
code |
-1 |
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization |
Sebastian Nowozin, Botond Cseke, Ryota Tomioka |
|
code |
-1 |
Bayesian Optimization for Probabilistic Programs |
Tom Rainforth, Tuan Anh Le, JanWillem van de Meent, Michael A. Osborne, Frank D. Wood |
|
code |
-1 |
Hierarchical Question-Image Co-Attention for Visual Question Answering |
Jiasen Lu, Jianwei Yang, Dhruv Batra, Devi Parikh |
|
code |
-1 |
Optimal Sparse Linear Encoders and Sparse PCA |
Malik MagdonIsmail, Christos Boutsidis |
|
code |
-1 |
FPNN: Field Probing Neural Networks for 3D Data |
Yangyan Li, Sören Pirk, Hao Su, Charles Ruizhongtai Qi, Leonidas J. Guibas |
|
code |
-1 |
CRF-CNN: Modeling Structured Information in Human Pose Estimation |
Xiao Chu, Wanli Ouyang, Hongsheng Li, Xiaogang Wang |
|
code |
-1 |
Fairness in Learning: Classic and Contextual Bandits |
Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth |
|
code |
-1 |
Joint M-Best-Diverse Labelings as a Parametric Submodular Minimization |
Alexander Kirillov, Alexander Shekhovtsov, Carsten Rother, Bogdan Savchynskyy |
|
code |
-1 |
Domain Separation Networks |
Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, Dumitru Erhan |
|
code |
-1 |
DISCO Nets : DISsimilarity COefficients Networks |
Diane Bouchacourt, Pawan Kumar Mudigonda, Sebastian Nowozin |
|
code |
-1 |
Multimodal Residual Learning for Visual QA |
JinHwa Kim, SangWoo Lee, DongHyun Kwak, MinOh Heo, Jeonghee Kim, JungWoo Ha, ByoungTak Zhang |
|
code |
-1 |
CMA-ES with Optimal Covariance Update and Storage Complexity |
Oswin Krause, Dídac Rodríguez Arbonès, Christian Igel |
|
code |
-1 |
R-FCN: Object Detection via Region-based Fully Convolutional Networks |
Jifeng Dai, Yi Li, Kaiming He, Jian Sun |
|
code |
-1 |
GAP Safe Screening Rules for Sparse-Group Lasso |
Eugène Ndiaye, Olivier Fercoq, Alexandre Gramfort, Joseph Salmon |
|
code |
-1 |
Learning and Forecasting Opinion Dynamics in Social Networks |
Abir De, Isabel Valera, Niloy Ganguly, Sourangshu Bhattacharya, Manuel GomezRodriguez |
|
code |
-1 |
Gradient-based Sampling: An Adaptive Importance Sampling for Least-squares |
Rong Zhu |
|
code |
-1 |
Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks |
Hao Wang, Xingjian Shi, DitYan Yeung |
|
code |
-1 |
Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula |
Jean Barbier, Mohamad Dia, Nicolas Macris, Florent Krzakala, Thibault Lesieur, Lenka Zdeborová |
|
code |
-1 |
A Unified Approach for Learning the Parameters of Sum-Product Networks |
Han Zhao, Pascal Poupart, Geoffrey J. Gordon |
|
code |
-1 |
Training and Evaluating Multimodal Word Embeddings with Large-scale Web Annotated Images |
Junhua Mao, Jiajing Xu, Yushi Jing, Alan L. Yuille |
|
code |
-1 |
Stochastic Online AUC Maximization |
Yiming Ying, Longyin Wen, Siwei Lyu |
|
code |
-1 |
The Generalized Reparameterization Gradient |
Francisco J. R. Ruiz, Michalis K. Titsias, David M. Blei |
|
code |
-1 |
Coupled Generative Adversarial Networks |
MingYu Liu, Oncel Tuzel |
|
code |
-1 |
Exponential Family Embeddings |
Maja Rudolph, Francisco J. R. Ruiz, Stephan Mandt, David M. Blei |
|
code |
-1 |
Variational Information Maximization for Feature Selection |
Shuyang Gao, Greg Ver Steeg, Aram Galstyan |
|
code |
-1 |
Operator Variational Inference |
Rajesh Ranganath, Dustin Tran, Jaan Altosaar, David M. Blei |
|
code |
-1 |
Fast learning rates with heavy-tailed losses |
Vu C. Dinh, Lam Si Tung Ho, Binh T. Nguyen, Duy M. H. Nguyen |
|
code |
-1 |
Budgeted stream-based active learning via adaptive submodular maximization |
Kaito Fujii, Hisashi Kashima |
|
code |
-1 |
Learning feed-forward one-shot learners |
Luca Bertinetto, João F. Henriques, Jack Valmadre, Philip H. S. Torr, Andrea Vedaldi |
|
code |
-1 |
Learning User Perceived Clusters with Feature-Level Supervision |
TingYu Cheng, Guiguan Lin, Xinyang Gong, KangJun Liu, ShanHung Wu |
|
code |
-1 |
Robust Spectral Detection of Global Structures in the Data by Learning a Regularization |
Pan Zhang |
|
code |
-1 |
Residual Networks Behave Like Ensembles of Relatively Shallow Networks |
Andreas Veit, Michael J. Wilber, Serge J. Belongie |
|
code |
-1 |
Adversarial Multiclass Classification: A Risk Minimization Perspective |
Rizal Fathony, Anqi Liu, Kaiser Asif, Brian D. Ziebart |
|
code |
-1 |
Solving Random Systems of Quadratic Equations via Truncated Generalized Gradient Flow |
Gang Wang, Georgios B. Giannakis |
|
code |
-1 |
Coin Betting and Parameter-Free Online Learning |
Francesco Orabona, Dávid Pál |
|
code |
-1 |
Deep Learning without Poor Local Minima |
Kenji Kawaguchi |
|
code |
-1 |
Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity |
Eugene Belilovsky, Gaël Varoquaux, Matthew B. Blaschko |
|
code |
-1 |
A Constant-Factor Bi-Criteria Approximation Guarantee for k-means++ |
Dennis Wei |
|
code |
-1 |
Generating Videos with Scene Dynamics |
Carl Vondrick, Hamed Pirsiavash, Antonio Torralba |
|
code |
-1 |
Neurally-Guided Procedural Models: Amortized Inference for Procedural Graphics Programs using Neural Networks |
Daniel Ritchie, Anna Thomas, Pat Hanrahan, Noah D. Goodman |
|
code |
-1 |
A Powerful Generative Model Using Random Weights for the Deep Image Representation |
Kun He, Yan Wang, John E. Hopcroft |
|
code |
-1 |
Optimizing affinity-based binary hashing using auxiliary coordinates |
Ramin Raziperchikolaei, Miguel Á. CarreiraPerpiñán |
|
code |
-1 |
Double Thompson Sampling for Dueling Bandits |
Huasen Wu, Xin Liu |
|
code |
-1 |
Generating Images with Perceptual Similarity Metrics based on Deep Networks |
Alexey Dosovitskiy, Thomas Brox |
|
code |
-1 |
Dynamic Filter Networks |
Xu Jia, Bert De Brabandere, Tinne Tuytelaars, Luc Van Gool |
|
code |
-1 |
A Simple Practical Accelerated Method for Finite Sums |
Aaron Defazio |
|
code |
-1 |
Barzilai-Borwein Step Size for Stochastic Gradient Descent |
Conghui Tan, Shiqian Ma, YuHong Dai, Yuqiu Qian |
|
code |
-1 |
On Graph Reconstruction via Empirical Risk Minimization: Fast Learning Rates and Scalability |
Guillaume Papa, Aurélien Bellet, Stéphan Clémençon |
|
code |
-1 |
Optimal spectral transportation with application to music transcription |
Rémi Flamary, Cédric Févotte, Nicolas Courty, Valentin Emiya |
|
code |
-1 |
Regularized Nonlinear Acceleration |
Damien Scieur, Alexandre d'Aspremont, Francis R. Bach |
|
code |
-1 |
SPALS: Fast Alternating Least Squares via Implicit Leverage Scores Sampling |
Dehua Cheng, Richard Peng, Yan Liu, Ioakeim Perros |
|
code |
-1 |
Single-Image Depth Perception in the Wild |
Weifeng Chen, Zhao Fu, Dawei Yang, Jia Deng |
|
code |
-1 |
Computational and Statistical Tradeoffs in Learning to Rank |
Ashish Khetan, Sewoong Oh |
|
code |
-1 |
Online Convex Optimization with Unconstrained Domains and Losses |
Ashok Cutkosky, Kwabena Boahen |
|
code |
-1 |
An ensemble diversity approach to supervised binary hashing |
Miguel Á. CarreiraPerpiñán, Ramin Raziperchikolaei |
|
code |
-1 |
Efficient Globally Convergent Stochastic Optimization for Canonical Correlation Analysis |
Weiran Wang, Jialei Wang, Dan Garber, Nati Srebro |
|
code |
-1 |
The Power of Adaptivity in Identifying Statistical Alternatives |
Kevin G. Jamieson, Daniel Haas, Benjamin Recht |
|
code |
-1 |
On Explore-Then-Commit strategies |
Aurélien Garivier, Tor Lattimore, Emilie Kaufmann |
|
code |
-1 |
Sublinear Time Orthogonal Tensor Decomposition |
Zhao Song, David P. Woodruff, Huan Zhang |
|
code |
-1 |
DECOrrelated feature space partitioning for distributed sparse regression |
Xiangyu Wang, David B. Dunson, Chenlei Leng |
|
code |
-1 |
Deep Alternative Neural Network: Exploring Contexts as Early as Possible for Action Recognition |
Jinzhuo Wang, Wenmin Wang, Xiongtao Chen, Ronggang Wang, Wen Gao |
|
code |
-1 |
Dual Learning for Machine Translation |
Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, TieYan Liu, WeiYing Ma |
|
code |
-1 |
Dialog-based Language Learning |
Jason Weston |
|
code |
-1 |
Joint Line Segmentation and Transcription for End-to-End Handwritten Paragraph Recognition |
Théodore Bluche |
|
code |
-1 |
Temporal Regularized Matrix Factorization for High-dimensional Time Series Prediction |
HsiangFu Yu, Nikhil Rao, Inderjit S. Dhillon |
|
code |
-1 |
Active Nearest-Neighbor Learning in Metric Spaces |
Aryeh Kontorovich, Sivan Sabato, Ruth Urner |
|
code |
-1 |
Proximal Deep Structured Models |
Shenlong Wang, Sanja Fidler, Raquel Urtasun |
|
code |
-1 |
Faster Projection-free Convex Optimization over the Spectrahedron |
Dan Garber |
|
code |
-1 |
Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach |
Rémi Lam, Karen Willcox, David H. Wolpert |
|
code |
-1 |
SoundNet: Learning Sound Representations from Unlabeled Video |
Yusuf Aytar, Carl Vondrick, Antonio Torralba |
|
code |
-1 |
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks |
Tim Salimans, Diederik P. Kingma |
|
code |
-1 |
Efficient Second Order Online Learning by Sketching |
Haipeng Luo, Alekh Agarwal, Nicolò CesaBianchi, John Langford |
|
code |
-1 |
Dynamic Mode Decomposition with Reproducing Kernels for Koopman Spectral Analysis |
Yoshinobu Kawahara |
|
code |
-1 |
Distributed Flexible Nonlinear Tensor Factorization |
Shandian Zhe, Kai Zhang, Pengyuan Wang, Kuangchih Lee, Zenglin Xu, Yuan Qi, Zoubin Ghahramani |
|
code |
-1 |
The Robustness of Estimator Composition |
Pingfan Tang, Jeff M. Phillips |
|
code |
-1 |
Efficient and Robust Spiking Neural Circuit for Navigation Inspired by Echolocating Bats |
Bipin Rajendran, Pulkit Tandon, Yash H. Malviya |
|
code |
-1 |
PerforatedCNNs: Acceleration through Elimination of Redundant Convolutions |
Mikhail Figurnov, Aizhan Ibraimova, Dmitry P. Vetrov, Pushmeet Kohli |
|
code |
-1 |
Differential Privacy without Sensitivity |
Kentaro Minami, Hiromi Arai, Issei Sato, Hiroshi Nakagawa |
|
code |
-1 |
Optimal Cluster Recovery in the Labeled Stochastic Block Model |
SeYoung Yun, Alexandre Proutière |
|
code |
-1 |
Even Faster SVD Decomposition Yet Without Agonizing Pain |
Zeyuan Allen Zhu, Yuanzhi Li |
|
code |
-1 |
An algorithm for L1 nearest neighbor search via monotonic embedding |
Xinan Wang, Sanjoy Dasgupta |
|
code |
-1 |
Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations |
Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff G. Schneider, Barnabás Póczos |
|
code |
-1 |
Linear-Memory and Decomposition-Invariant Linearly Convergent Conditional Gradient Algorithm for Structured Polytopes |
Dan Garber, Ofer Meshi |
|
code |
-1 |
Efficient Nonparametric Smoothness Estimation |
Shashank Singh, Simon S. Du, Barnabás Póczos |
|
code |
-1 |
A Theoretically Grounded Application of Dropout in Recurrent Neural Networks |
Yarin Gal, Zoubin Ghahramani |
|
code |
-1 |
Fast ε-free Inference of Simulation Models with Bayesian Conditional Density Estimation |
George Papamakarios, Iain Murray |
|
code |
-1 |
Direct Feedback Alignment Provides Learning in Deep Neural Networks |
Arild Nøkland |
|
code |
-1 |
Safe and Efficient Off-Policy Reinforcement Learning |
Rémi Munos, Tom Stepleton, Anna Harutyunyan, Marc G. Bellemare |
|
code |
-1 |
A Multi-Batch L-BFGS Method for Machine Learning |
Albert S. Berahas, Jorge Nocedal, Martin Takác |
|
code |
-1 |
Semiparametric Differential Graph Models |
Pan Xu, Quanquan Gu |
|
code |
-1 |
Rényi Divergence Variational Inference |
Yingzhen Li, Richard E. Turner |
|
code |
-1 |
Doubly Convolutional Neural Networks |
Shuangfei Zhai, Yu Cheng, Zhongfei (Mark) Zhang, Weining Lu |
|
code |
-1 |
Density Estimation via Discrepancy Based Adaptive Sequential Partition |
Dangna Li, Kun Yang, Wing Hung Wong |
|
code |
-1 |
How Deep is the Feature Analysis underlying Rapid Visual Categorization? |
Sven Eberhardt, Jonah G. Cader, Thomas Serre |
|
code |
-1 |
VIME: Variational Information Maximizing Exploration |
Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, Pieter Abbeel |
|
code |
-1 |
Generalized Correspondence-LDA Models (GC-LDA) for Identifying Functional Regions in the Brain |
Timothy N. Rubin, Oluwasanmi Koyejo, Michael N. Jones, Tal Yarkoni |
|
code |
-1 |
Solving Marginal MAP Problems with NP Oracles and Parity Constraints |
Yexiang Xue, Zhiyuan Li, Stefano Ermon, Carla P. Gomes, Bart Selman |
|
code |
-1 |
Multi-view Anomaly Detection via Robust Probabilistic Latent Variable Models |
Tomoharu Iwata, Makoto Yamada |
|
code |
-1 |
Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization |
Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola |
|
code |
-1 |
Variance Reduction in Stochastic Gradient Langevin Dynamics |
Kumar Avinava Dubey, Sashank J. Reddi, Sinead A. Williamson, Barnabás Póczos, Alexander J. Smola, Eric P. Xing |
|
code |
-1 |
Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning |
Mehdi Sajjadi, Mehran Javanmardi, Tolga Tasdizen |
|
code |
-1 |
Dense Associative Memory for Pattern Recognition |
Dmitry Krotov, John J. Hopfield |
|
code |
-1 |
Causal Bandits: Learning Good Interventions via Causal Inference |
Finnian Lattimore, Tor Lattimore, Mark D. Reid |
|
code |
-1 |
Refined Lower Bounds for Adversarial Bandits |
Sébastien Gerchinovitz, Tor Lattimore |
|
code |
-1 |
Theoretical Comparisons of Positive-Unlabeled Learning against Positive-Negative Learning |
Gang Niu, Marthinus Christoffel du Plessis, Tomoya Sakai, Yao Ma, Masashi Sugiyama |
|
code |
-1 |
Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than O(1/\epsilon) |
Yi Xu, Yan Yan, Qihang Lin, Tianbao Yang |
|
code |
-1 |
Finite-Sample Analysis of Fixed-k Nearest Neighbor Density Functional Estimators |
Shashank Singh, Barnabás Póczos |
|
code |
-1 |
A state-space model of cross-region dynamic connectivity in MEG/EEG |
Ying Yang, Elissa Aminoff, Michael J. Tarr, Robert E. Kass |
|
code |
-1 |
What Makes Objects Similar: A Unified Multi-Metric Learning Approach |
HanJia Ye, DeChuan Zhan, XueMin Si, Yuan Jiang, ZhiHua Zhou |
|
code |
-1 |
Adaptive Maximization of Pointwise Submodular Functions With Budget Constraint |
Nguyen Cuong, Huan Xu |
|
code |
-1 |
Dueling Bandits: Beyond Condorcet Winners to General Tournament Solutions |
Siddartha Y. Ramamohan, Arun Rajkumar, Shivani Agarwal |
|
code |
-1 |
Local Similarity-Aware Deep Feature Embedding |
Chen Huang, Chen Change Loy, Xiaoou Tang |
|
code |
-1 |
A Communication-Efficient Parallel Algorithm for Decision Tree |
Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhiming Ma, TieYan Liu |
|
code |
-1 |
Convex Two-Layer Modeling with Latent Structure |
Vignesh Ganapathiraman, Xinhua Zhang, Yaoliang Yu, Junfeng Wen |
|
code |
-1 |
Sampling for Bayesian Program Learning |
Kevin Ellis, Armando SolarLezama, Josh Tenenbaum |
|
code |
-1 |
Learning Kernels with Random Features |
Aman Sinha, John C. Duchi |
|
code |
-1 |
Optimal Tagging with Markov Chain Optimization |
Nir Rosenfeld, Amir Globerson |
|
code |
-1 |
Crowdsourced Clustering: Querying Edges vs Triangles |
Ramya Korlakai Vinayak, Babak Hassibi |
|
code |
-1 |
Mixed vine copulas as joint models of spike counts and local field potentials |
Arno Onken, Stefano Panzeri |
|
code |
-1 |
Achieving the KS threshold in the general stochastic block model with linearized acyclic belief propagation |
Emmanuel Abbe, Colin Sandon |
|
code |
-1 |
Adaptive Concentration Inequalities for Sequential Decision Problems |
Shengjia Zhao, Enze Zhou, Ashish Sabharwal, Stefano Ermon |
|
code |
-1 |
Nested Mini-Batch K-Means |
James Newling, François Fleuret |
|
code |
-1 |
Deep Learning Models of the Retinal Response to Natural Scenes |
Lane McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, Stephen Baccus |
|
code |
-1 |
Preference Completion from Partial Rankings |
Suriya Gunasekar, Oluwasanmi Koyejo, Joydeep Ghosh |
|
code |
-1 |
Dynamic Network Surgery for Efficient DNNs |
Yiwen Guo, Anbang Yao, Yurong Chen |
|
code |
-1 |
Learning a Metric Embedding for Face Recognition using the Multibatch Method |
Oren Tadmor, Tal Rosenwein, Shai ShalevShwartz, Yonatan Wexler, Amnon Shashua |
|
code |
-1 |
A Pseudo-Bayesian Algorithm for Robust PCA |
TaeHyun Oh, Yasuyuki Matsushita, InSo Kweon, David P. Wipf |
|
code |
-1 |
End-to-End Kernel Learning with Supervised Convolutional Kernel Networks |
Julien Mairal |
|
code |
-1 |
Stochastic Variance Reduction Methods for Saddle-Point Problems |
Balamurugan Palaniappan, Francis R. Bach |
|
code |
-1 |
Flexible Models for Microclustering with Application to Entity Resolution |
Brenda Betancourt, Giacomo Zanella, Jeffrey W. Miller, Hanna M. Wallach, Abbas Zaidi, Beka Steorts |
|
code |
-1 |
Catching heuristics are optimal control policies |
Boris Belousov, Gerhard Neumann, Constantin A. Rothkopf, Jan Peters |
|
code |
-1 |
Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian |
Victor Picheny, Robert B. Gramacy, Stefan M. Wild, Sébastien Le Digabel |
|
code |
-1 |
Adaptive Neural Compilation |
Rudy Bunel, Alban Desmaison, Pawan Kumar Mudigonda, Pushmeet Kohli, Philip H. S. Torr |
|
code |
-1 |
Synthesis of MCMC and Belief Propagation |
Sungsoo Ahn, Michael Chertkov, Jinwoo Shin |
|
code |
-1 |
Learning Treewidth-Bounded Bayesian Networks with Thousands of Variables |
Mauro Scanagatta, Giorgio Corani, Cassio P. de Campos, Marco Zaffalon |
|
code |
-1 |
Unifying Count-Based Exploration and Intrinsic Motivation |
Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, Rémi Munos |
|
code |
-1 |
Large Margin Discriminant Dimensionality Reduction in Prediction Space |
Mohammad J. Saberian, José Costa Pereira, Nuno Vasconcelos, Can Xu |
|
code |
-1 |
Stochastic Structured Prediction under Bandit Feedback |
Artem Sokolov, Julia Kreutzer, Stefan Riezler, Christopher Lo |
|
code |
-1 |
Simple and Efficient Weighted Minwise Hashing |
Anshumali Shrivastava |
|
code |
-1 |
Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation |
Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, Volkan Cevher |
|
code |
-1 |
Structured Sparse Regression via Greedy Hard Thresholding |
Prateek Jain, Nikhil Rao, Inderjit S. Dhillon |
|
code |
-1 |
Understanding Probabilistic Sparse Gaussian Process Approximations |
Matthias Bauer, Mark van der Wilk, Carl Edward Rasmussen |
|
code |
-1 |
SEBOOST - Boosting Stochastic Learning Using Subspace Optimization Techniques |
Elad Richardson, Rom Herskovitz, Boris Ginsburg, Michael Zibulevsky |
|
code |
-1 |
Generating Long-term Trajectories Using Deep Hierarchical Networks |
Stephan Zheng, Yisong Yue, Jennifer A. Hobbs |
|
code |
-1 |
Learning Tree Structured Potential Games |
Vikas K. Garg, Tommi S. Jaakkola |
|
code |
-1 |
Observational-Interventional Priors for Dose-Response Learning |
Ricardo Silva |
|
code |
-1 |
Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs |
Shahin Jabbari, Ryan M. Rogers, Aaron Roth, Zhiwei Steven Wu |
|
code |
-1 |
Identification and Overidentification of Linear Structural Equation Models |
Bryant Chen |
|
code |
-1 |
Adaptive Skills Adaptive Partitions (ASAP) |
Daniel J. Mankowitz, Timothy A. Mann, Shie Mannor |
|
code |
-1 |
Multiple-Play Bandits in the Position-Based Model |
Paul Lagrée, Claire Vernade, Olivier Cappé |
|
code |
-1 |
Optimal Black-Box Reductions Between Optimization Objectives |
Zeyuan Allen Zhu, Elad Hazan |
|
code |
-1 |
On Valid Optimal Assignment Kernels and Applications to Graph Classification |
Nils M. Kriege, PierreLouis Giscard, Richard C. Wilson |
|
code |
-1 |
Robustness of classifiers: from adversarial to random noise |
Alhussein Fawzi, SeyedMohsen MoosaviDezfooli, Pascal Frossard |
|
code |
-1 |
A Non-convex One-Pass Framework for Generalized Factorization Machine and Rank-One Matrix Sensing |
Ming Lin, Jieping Ye |
|
code |
-1 |
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters |
Zeyuan Allen Zhu, Yang Yuan, Karthik Sridharan |
|
code |
-1 |
Combinatorial Multi-Armed Bandit with General Reward Functions |
Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, Pinyan Lu |
|
code |
-1 |
Boosting with Abstention |
Corinna Cortes, Giulia DeSalvo, Mehryar Mohri |
|
code |
-1 |
Regret of Queueing Bandits |
Subhashini Krishnasamy, Rajat Sen, Ramesh Johari, Sanjay Shakkottai |
|
code |
-1 |
Deep Learning Games |
Dale Schuurmans, Martin Zinkevich |
|
code |
-1 |
Globally Optimal Training of Generalized Polynomial Neural Networks with Nonlinear Spectral Methods |
Antoine Gautier, Quynh Nguyen, Matthias Hein |
|
code |
-1 |
Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision |
Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, Honglak Lee |
|
code |
-1 |
A Credit Assignment Compiler for Joint Prediction |
KaiWei Chang, He He, Stéphane Ross, Hal Daumé III, John Langford |
|
code |
-1 |
Accelerating Stochastic Composition Optimization |
Mengdi Wang, Ji Liu, Ethan X. Fang |
|
code |
-1 |
Reward Augmented Maximum Likelihood for Neural Structured Prediction |
Mohammad Norouzi, Samy Bengio, Zhifeng Chen, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans |
|
code |
-1 |
Consistent Kernel Mean Estimation for Functions of Random Variables |
CarlJohann SimonGabriel, Adam Scibior, Ilya O. Tolstikhin, Bernhard Schölkopf |
|
code |
-1 |
Towards Unifying Hamiltonian Monte Carlo and Slice Sampling |
Yizhe Zhang, Xiangyu Wang, Changyou Chen, Ricardo Henao, Kai Fan, Lawrence Carin |
|
code |
-1 |
Scalable Adaptive Stochastic Optimization Using Random Projections |
Gabriel Krummenacher, Brian McWilliams, Yannic Kilcher, Joachim M. Buhmann, Nicolai Meinshausen |
|
code |
-1 |
Variational Inference in Mixed Probabilistic Submodular Models |
Josip Djolonga, Sebastian Tschiatschek, Andreas Krause |
|
code |
-1 |
Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated |
Namrata Vaswani, Han Guo |
|
code |
-1 |
The Multi-fidelity Multi-armed Bandit |
Kirthevasan Kandasamy, Gautam Dasarathy, Barnabás Póczos, Jeff G. Schneider |
|
code |
-1 |
Anchor-Free Correlated Topic Modeling: Identifiability and Algorithm |
Kejun Huang, Xiao Fu, Nikos D. Sidiropoulos |
|
code |
-1 |
Bootstrap Model Aggregation for Distributed Statistical Learning |
Jun Han, Qiang Liu |
|
code |
-1 |
A scalable end-to-end Gaussian process adapter for irregularly sampled time series classification |
Steven ChengXian Li, Benjamin M. Marlin |
|
code |
-1 |
A Bandit Framework for Strategic Regression |
Yang Liu, Yiling Chen |
|
code |
-1 |
Architectural Complexity Measures of Recurrent Neural Networks |
Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin, Roland Memisevic, Ruslan Salakhutdinov, Yoshua Bengio |
|
code |
-1 |
Statistical Inference for Cluster Trees |
Jisu Kim, YenChi Chen, Sivaraman Balakrishnan, Alessandro Rinaldo, Larry A. Wasserman |
|
code |
-1 |
PAC Reinforcement Learning with Rich Observations |
Akshay Krishnamurthy, Alekh Agarwal, John Langford |
|
code |
-1 |
Improved Deep Metric Learning with Multi-class N-pair Loss Objective |
Kihyuk Sohn |
|
code |
-1 |
Unsupervised Learning of Spoken Language with Visual Context |
David F. Harwath, Antonio Torralba, James R. Glass |
|
code |
-1 |
Low-Rank Regression with Tensor Responses |
Guillaume Rabusseau, Hachem Kadri |
|
code |
-1 |
PAC-Bayesian Theory Meets Bayesian Inference |
Pascal Germain, Francis R. Bach, Alexandre Lacoste, Simon LacosteJulien |
|
code |
-1 |
Data Poisoning Attacks on Factorization-Based Collaborative Filtering |
Bo Li, Yining Wang, Aarti Singh, Yevgeniy Vorobeychik |
|
code |
-1 |
Learned Region Sparsity and Diversity Also Predicts Visual Attention |
Zijun Wei, Hossein Adeli, Minh Hoai, Gregory J. Zelinsky, Dimitris Samaras |
|
code |
-1 |
End-to-End Goal-Driven Web Navigation |
Rodrigo Frassetto Nogueira, Kyunghyun Cho |
|
code |
-1 |
Automated scalable segmentation of neurons from multispectral images |
Uygar Sümbül, Douglas H. Roossien, Dawen Cai, Fei Chen, Nicholas Barry, John P. Cunningham, Edward S. Boyden, Liam Paninski |
|
code |
-1 |
Privacy Odometers and Filters: Pay-as-you-Go Composition |
Ryan M. Rogers, Salil P. Vadhan, Aaron Roth, Jonathan R. Ullman |
|
code |
-1 |
Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels |
Ilya O. Tolstikhin, Bharath K. Sriperumbudur, Bernhard Schölkopf |
|
code |
-1 |
Adaptive optimal training of animal behavior |
Ji Hyun Bak, Jung Choi, Ilana Witten, Athena Akrami, Jonathan W. Pillow |
|
code |
-1 |
Hierarchical Object Representation for Open-Ended Object Category Learning and Recognition |
Seyed Hamidreza Kasaei, Ana Maria Tomé, Luís Seabra Lopes |
|
code |
-1 |
Relevant sparse codes with variational information bottleneck |
Matthew Chalk, Olivier Marre, Gasper Tkacik |
|
code |
-1 |
Combinatorial Energy Learning for Image Segmentation |
Jeremy B. MaitinShepard, Viren Jain, Michal Januszewski, Peter Li, Pieter Abbeel |
|
code |
-1 |
Orthogonal Random Features |
Felix X. Yu, Ananda Theertha Suresh, Krzysztof Marcin Choromanski, Daniel N. HoltmannRice, Sanjiv Kumar |
|
code |
-1 |
Fast Active Set Methods for Online Spike Inference from Calcium Imaging |
Johannes Friedrich, Liam Paninski |
|
code |
-1 |
Diffusion-Convolutional Neural Networks |
James Atwood, Don Towsley |
|
code |
-1 |
Bayesian latent structure discovery from multi-neuron recordings |
Scott W. Linderman, Ryan P. Adams, Jonathan W. Pillow |
|
code |
-1 |
A Probabilistic Programming Approach To Probabilistic Data Analysis |
Feras Saad, Vikash K. Mansinghka |
|
code |
-1 |
A Non-parametric Learning Method for Confidently Estimating Patient's Clinical State and Dynamics |
William Hoiles, Mihaela van der Schaar |
|
code |
-1 |
Inference by Reparameterization in Neural Population Codes |
Rajkumar Vasudeva Raju, Xaq Pitkow |
|
code |
-1 |
Tensor Switching Networks |
ChuanYung Tsai, Andrew M. Saxe, David D. Cox |
|
code |
-1 |
Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo |
Alain Durmus, Umut Simsekli, Eric Moulines, Roland Badeau, Gaël Richard |
|
code |
-1 |
Coordinate-wise Power Method |
Qi Lei, Kai Zhong, Inderjit S. Dhillon |
|
code |
-1 |
Learning Influence Functions from Incomplete Observations |
Xinran He, Ke Xu, David Kempe, Yan Liu |
|
code |
-1 |
Learning Structured Sparsity in Deep Neural Networks |
Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, Hai Li |
|
code |
-1 |
Sample Complexity of Automated Mechanism Design |
MariaFlorina Balcan, Tuomas Sandholm, Ellen Vitercik |
|
code |
-1 |
Short-Dot: Computing Large Linear Transforms Distributedly Using Coded Short Dot Products |
Sanghamitra Dutta, Viveck R. Cadambe, Pulkit Grover |
|
code |
-1 |
Brains on Beats |
Umut Güçlü, Jordy Thielen, Michael Hanke, Marcel van Gerven, Marcel A. J. van Gerven |
|
code |
-1 |
Learning Transferrable Representations for Unsupervised Domain Adaptation |
Ozan Sener, Hyun Oh Song, Ashutosh Saxena, Silvio Savarese |
|
code |
-1 |
Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles |
Stefan Lee, Senthil Purushwalkam, Michael Cogswell, Viresh Ranjan, David J. Crandall, Dhruv Batra |
|
code |
-1 |
Active Learning from Imperfect Labelers |
Songbai Yan, Kamalika Chaudhuri, Tara Javidi |
|
code |
-1 |
Learning to Communicate with Deep Multi-Agent Reinforcement Learning |
Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, Shimon Whiteson |
|
code |
-1 |
Value Iteration Networks |
Aviv Tamar, Sergey Levine, Pieter Abbeel, Yi Wu, Garrett Thomas |
|
code |
-1 |
Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering |
Dogyoon Song, Christina E. Lee, Yihua Li, Devavrat Shah |
|
code |
-1 |
On the Recursive Teaching Dimension of VC Classes |
Xi Chen, Yu Cheng, Bo Tang |
|
code |
-1 |
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets |
Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel |
|
code |
-1 |
Hardness of Online Sleeping Combinatorial Optimization Problems |
Satyen Kale, Chansoo Lee, Dávid Pál |
|
code |
-1 |
Mixed Linear Regression with Multiple Components |
Kai Zhong, Prateek Jain, Inderjit S. Dhillon |
|
code |
-1 |
Sequential Neural Models with Stochastic Layers |
Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, Ole Winther |
|
code |
-1 |
Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences |
Hongseok Namkoong, John C. Duchi |
|
code |
-1 |
Minimizing Quadratic Functions in Constant Time |
Kohei Hayashi, Yuichi Yoshida |
|
code |
-1 |
Improved Techniques for Training GANs |
Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen |
|
code |
-1 |
DeepMath - Deep Sequence Models for Premise Selection |
Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Eén, François Chollet, Josef Urban |
|
code |
-1 |
Learning Multiagent Communication with Backpropagation |
Sainbayar Sukhbaatar, Arthur Szlam, Rob Fergus |
|
code |
-1 |
Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity |
Amit Daniely, Roy Frostig, Yoram Singer |
|
code |
-1 |
Learning the Number of Neurons in Deep Networks |
Jose M. Alvarez, Mathieu Salzmann |
|
code |
-1 |
Finding significant combinations of features in the presence of categorical covariates |
Laetitia Papaxanthos, Felipe LlinaresLópez, Dean A. Bodenham, Karsten M. Borgwardt |
|
code |
-1 |
Examples are not enough, learn to criticize! Criticism for Interpretability |
Been Kim, Oluwasanmi Koyejo, Rajiv Khanna |
|
code |
-1 |
Optimistic Bandit Convex Optimization |
Scott Yang, Mehryar Mohri |
|
code |
-1 |
Safe Policy Improvement by Minimizing Robust Baseline Regret |
Mohammad Ghavamzadeh, Marek Petrik, Yinlam Chow |
|
code |
-1 |
Graphons, mergeons, and so on! |
Justin Eldridge, Mikhail Belkin, Yusu Wang |
|
code |
-1 |
Hierarchical Clustering via Spreading Metrics |
Aurko Roy, Sebastian Pokutta |
|
code |
-1 |
Learning Bayesian networks with ancestral constraints |
Eunice YuhJie Chen, Yujia Shen, Arthur Choi, Adnan Darwiche |
|
code |
-1 |
Pruning Random Forests for Prediction on a Budget |
Feng Nan, Joseph Wang, Venkatesh Saligrama |
|
code |
-1 |
Clustering with Bregman Divergences: an Asymptotic Analysis |
Chaoyue Liu, Mikhail Belkin |
|
code |
-1 |
Variational Autoencoder for Deep Learning of Images, Labels and Captions |
Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens, Lawrence Carin |
|
code |
-1 |
Review Networks for Caption Generation |
Zhilin Yang, Ye Yuan, Yuexin Wu, William W. Cohen, Ruslan Salakhutdinov |
|
code |
-1 |
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm |
Qiang Liu, Dilin Wang |
|
code |
-1 |
A Bio-inspired Redundant Sensing Architecture |
Anh Tuan Nguyen, Jian Xu, Zhi Yang |
|
code |
-1 |
Contextual semibandits via supervised learning oracles |
Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík |
|
code |
-1 |
Blind Attacks on Machine Learners |
Alex Beatson, Zhaoran Wang, Han Liu |
|
code |
-1 |
Universal Correspondence Network |
Christopher B. Choy, JunYoung Gwak, Silvio Savarese, Manmohan Krishna Chandraker |
|
code |
-1 |
Satisfying Real-world Goals with Dataset Constraints |
Gabriel Goh, Andrew Cotter, Maya R. Gupta, Michael P. Friedlander |
|
code |
-1 |
Deep Learning for Predicting Human Strategic Behavior |
Jason S. Hartford, James R. Wright, Kevin LeytonBrown |
|
code |
-1 |
Phased Exploration with Greedy Exploitation in Stochastic Combinatorial Partial Monitoring Games |
Sougata Chaudhuri, Ambuj Tewari |
|
code |
-1 |
Eliciting Categorical Data for Optimal Aggregation |
ChienJu Ho, Rafael M. Frongillo, Yiling Chen |
|
code |
-1 |
Measuring the reliability of MCMC inference with bidirectional Monte Carlo |
Roger B. Grosse, Siddharth Ancha, Daniel M. Roy |
|
code |
-1 |
Breaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation |
Weihao Gao, Sewoong Oh, Pramod Viswanath |
|
code |
-1 |
Selective inference for group-sparse linear models |
Fan Yang, Rina Foygel Barber, Prateek Jain, John D. Lafferty |
|
code |
-1 |
Graph Clustering: Block-models and model free results |
Yali Wan, Marina Meila |
|
code |
-1 |
Maximizing Influence in an Ising Network: A Mean-Field Optimal Solution |
Christopher Lynn, Daniel D. Lee |
|
code |
-1 |
Hypothesis Testing in Unsupervised Domain Adaptation with Applications in Alzheimer's Disease |
Hao Henry Zhou, Vamsi K. Ithapu, Sathya Narayanan Ravi, Vikas Singh, Grace Wahba, Sterling C. Johnson |
|
code |
-1 |
Geometric Dirichlet Means Algorithm for topic inference |
Mikhail Yurochkin, XuanLong Nguyen |
|
code |
-1 |
Structured Prediction Theory Based on Factor Graph Complexity |
Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Scott Yang |
|
code |
-1 |
Improved Dropout for Shallow and Deep Learning |
Zhe Li, Boqing Gong, Tianbao Yang |
|
code |
-1 |
Constraints Based Convex Belief Propagation |
Yaniv Tenzer, Alexander G. Schwing, Kevin Gimpel, Tamir Hazan |
|
code |
-1 |
Error Analysis of Generalized Nyström Kernel Regression |
Hong Chen, Haifeng Xia, Heng Huang, Weidong Cai |
|
code |
-1 |
A Probabilistic Framework for Deep Learning |
Ankit B. Patel, Minh Tan Nguyen, Richard G. Baraniuk |
|
code |
-1 |
General Tensor Spectral Co-clustering for Higher-Order Data |
Tao Wu, Austin R. Benson, David F. Gleich |
|
code |
-1 |
Single Pass PCA of Matrix Products |
Shanshan Wu, Srinadh Bhojanapalli, Sujay Sanghavi, Alexandros G. Dimakis |
|
code |
-1 |
Stochastic Variational Deep Kernel Learning |
Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, Eric P. Xing |
|
code |
-1 |
Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models |
Marc Vuffray, Sidhant Misra, Andrey Y. Lokhov, Michael Chertkov |
|
code |
-1 |
Long-term Causal Effects via Behavioral Game Theory |
Panagiotis Toulis, David C. Parkes |
|
code |
-1 |
Measuring Neural Net Robustness with Constraints |
Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya V. Nori, Antonio Criminisi |
|
code |
-1 |
Reshaped Wirtinger Flow for Solving Quadratic System of Equations |
Huishuai Zhang, Yingbin Liang |
|
code |
-1 |
Nearly Isometric Embedding by Relaxation |
James McQueen, Marina Meila, Dominique Joncas |
|
code |
-1 |
Probabilistic Inference with Generating Functions for Poisson Latent Variable Models |
Kevin Winner, Daniel Sheldon |
|
code |
-1 |
Causal meets Submodular: Subset Selection with Directed Information |
Yuxun Zhou, Costas J. Spanos |
|
code |
-1 |
Depth from a Single Image by Harmonizing Overcomplete Local Network Predictions |
Ayan Chakrabarti, Jingyu Shao, Greg Shakhnarovich |
|
code |
-1 |
Deep Neural Networks with Inexact Matching for Person Re-Identification |
Arulkumar Subramaniam, Moitreya Chatterjee, Anurag Mittal |
|
code |
-1 |
Global Analysis of Expectation Maximization for Mixtures of Two Gaussians |
Ji Xu, Daniel J. Hsu, Arian Maleki |
|
code |
-1 |
Estimating the class prior and posterior from noisy positives and unlabeled data |
Shantanu Jain, Martha White, Predrag Radivojac |
|
code |
-1 |
Kronecker Determinantal Point Processes |
Zelda E. Mariet, Suvrit Sra |
|
code |
-1 |
Finite Sample Prediction and Recovery Bounds for Ordinal Embedding |
Lalit Jain, Kevin G. Jamieson, Robert D. Nowak |
|
code |
-1 |
Feature-distributed sparse regression: a screen-and-clean approach |
Jiyan Yang, Michael W. Mahoney, Michael A. Saunders, Yuekai Sun |
|
code |
-1 |
Learning Bound for Parameter Transfer Learning |
Wataru Kumagai |
|
code |
-1 |
Learning under uncertainty: a comparison between R-W and Bayesian approach |
He Huang, Martin P. Paulus |
|
code |
-1 |
Bi-Objective Online Matching and Submodular Allocations |
Hossein Esfandiari, Nitish Korula, Vahab S. Mirrokni |
|
code |
-1 |
Quantized Random Projections and Non-Linear Estimation of Cosine Similarity |
Ping Li, Michael Mitzenmacher, Martin Slawski |
|
code |
-1 |
The non-convex Burer-Monteiro approach works on smooth semidefinite programs |
Nicolas Boumal, Vladislav Voroninski, Afonso S. Bandeira |
|
code |
-1 |
Dimensionality Reduction of Massive Sparse Datasets Using Coresets |
Dan Feldman, Mikhail Volkov, Daniela Rus |
|
code |
-1 |
Using Social Dynamics to Make Individual Predictions: Variational Inference with a Stochastic Kinetic Model |
Zhen Xu, Wen Dong, Sargur N. Srihari |
|
code |
-1 |
Supervised learning through the lens of compression |
Ofir David, Shay Moran, Amir Yehudayoff |
|
code |
-1 |
Generative Shape Models: Joint Text Recognition and Segmentation with Very Little Training Data |
Xinghua Lou, Ken Kansky, Wolfgang Lehrach, C. C. Laan, Bhaskara Marthi, D. Scott Phoenix, Dileep George |
|
code |
-1 |
Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections |
XiaoJiao Mao, Chunhua Shen, YuBin Yang |
|
code |
-1 |
Object based Scene Representations using Fisher Scores of Local Subspace Projections |
Mandar Dixit, Nuno Vasconcelos |
|
code |
-1 |
Active Learning with Oracle Epiphany |
TzuKuo Huang, Lihong Li, Ara Vartanian, Saleema Amershi, Xiaojin Zhu |
|
code |
-1 |
Statistical Inference for Pairwise Graphical Models Using Score Matching |
Ming Yu, Mladen Kolar, Varun Gupta |
|
code |
-1 |
Improved Error Bounds for Tree Representations of Metric Spaces |
Samir Chowdhury, Facundo Mémoli, Zane T. Smith |
|
code |
-1 |
Can Peripheral Representations Improve Clutter Metrics on Complex Scenes? |
Arturo Deza, Miguel P. Eckstein |
|
code |
-1 |
On Multiplicative Integration with Recurrent Neural Networks |
Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, Ruslan Salakhutdinov |
|
code |
-1 |
Learning HMMs with Nonparametric Emissions via Spectral Decompositions of Continuous Matrices |
Kirthevasan Kandasamy, Maruan AlShedivat, Eric P. Xing |
|
code |
-1 |
Regret Bounds for Non-decomposable Metrics with Missing Labels |
Nagarajan Natarajan, Prateek Jain |
|
code |
-1 |
Robust k-means: a Theoretical Revisit |
Alexandros Georgogiannis |
|
code |
-1 |
Bayesian optimization for automated model selection |
Gustavo Malkomes, Chip Schaff, Roman Garnett |
|
code |
-1 |
A Probabilistic Model of Social Decision Making based on Reward Maximization |
Koosha Khalvati, Seongmin A. Park, JeanClaude Dreher, Rajesh P. Rao |
|
code |
-1 |
Balancing Suspense and Surprise: Timely Decision Making with Endogenous Information Acquisition |
Ahmed M. Alaa, Mihaela van der Schaar |
|
code |
-1 |
Fast and Flexible Monotonic Functions with Ensembles of Lattices |
Mahdi Milani Fard, Kevin Robert Canini, Andrew Cotter, Jan Pfeifer, Maya R. Gupta |
|
code |
-1 |
Conditional Generative Moment-Matching Networks |
Yong Ren, Jun Zhu, Jialian Li, Yucen Luo |
|
code |
-1 |
Stochastic Gradient MCMC with Stale Gradients |
Changyou Chen, Nan Ding, Chunyuan Li, Yizhe Zhang, Lawrence Carin |
|
code |
-1 |
Composing graphical models with neural networks for structured representations and fast inference |
Matthew J. Johnson, David Duvenaud, Alexander B. Wiltschko, Ryan P. Adams, Sandeep R. Datta |
|
code |
-1 |
Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling |
MariaFlorina Balcan, Hongyang Zhang |
|
code |
-1 |
Combinatorial semi-bandit with known covariance |
Rémy Degenne, Vianney Perchet |
|
code |
-1 |
Matrix Completion has No Spurious Local Minimum |
Rong Ge, Jason D. Lee, Tengyu Ma |
|
code |
-1 |
The Multiscale Laplacian Graph Kernel |
Risi Kondor, Horace Pan |
|
code |
-1 |
Adaptive Averaging in Accelerated Descent Dynamics |
Walid Krichene, Alexandre M. Bayen, Peter L. Bartlett |
|
code |
-1 |
Sub-sampled Newton Methods with Non-uniform Sampling |
Peng Xu, Jiyan Yang, Farbod RoostaKhorasani, Christopher Ré, Michael W. Mahoney |
|
code |
-1 |
Stochastic Gradient Geodesic MCMC Methods |
Chang Liu, Jun Zhu, Yang Song |
|
code |
-1 |
Variational Bayes on Monte Carlo Steroids |
Aditya Grover, Stefano Ermon |
|
code |
-1 |
Showing versus doing: Teaching by demonstration |
Mark K. Ho, Michael L. Littman, James MacGlashan, Fiery Cushman, Joseph L. Austerweil |
|
code |
-1 |
Combining Fully Convolutional and Recurrent Neural Networks for 3D Biomedical Image Segmentation |
Jianxu Chen, Lin Yang, Yizhe Zhang, Mark S. Alber, Danny Ziyi Chen |
|
code |
-1 |
Maximization of Approximately Submodular Functions |
Thibaut Horel, Yaron Singer |
|
code |
-1 |
A Comprehensive Linear Speedup Analysis for Asynchronous Stochastic Parallel Optimization from Zeroth-Order to First-Order |
Xiangru Lian, Huan Zhang, ChoJui Hsieh, Yijun Huang, Ji Liu |
|
code |
-1 |
Learning Infinite RBMs with Frank-Wolfe |
Wei Ping, Qiang Liu, Alexander Ihler |
|
code |
-1 |
Estimating the Size of a Large Network and its Communities from a Random Sample |
Lin Chen, Amin Karbasi, Forrest W. Crawford |
|
code |
-1 |
Learning Sensor Multiplexing Design through Back-propagation |
Ayan Chakrabarti |
|
code |
-1 |
On Robustness of Kernel Clustering |
Bowei Yan, Purnamrita Sarkar |
|
code |
-1 |
High resolution neural connectivity from incomplete tracing data using nonnegative spline regression |
Kameron Decker Harris, Stefan Mihalas, Eric SheaBrown |
|
code |
-1 |
MoCap-guided Data Augmentation for 3D Pose Estimation in the Wild |
Grégory Rogez, Cordelia Schmid |
|
code |
-1 |
New Liftable Classes for First-Order Probabilistic Inference |
Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den Broeck, David Poole |
|
code |
-1 |
The Parallel Knowledge Gradient Method for Batch Bayesian Optimization |
Jian Wu, Peter I. Frazier |
|
code |
-1 |
Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits |
Vasilis Syrgkanis, Haipeng Luo, Akshay Krishnamurthy, Robert E. Schapire |
|
code |
-1 |
Consistent Estimation of Functions of Data Missing Non-Monotonically and Not at Random |
Ilya Shpitser |
|
code |
-1 |
Optimistic Gittins Indices |
Eli Gutin, Vivek F. Farias |
|
code |
-1 |
Finite-Dimensional BFRY Priors and Variational Bayesian Inference for Power Law Models |
Juho Lee, Lancelot F. James, Seungjin Choi |
|
code |
-1 |
Launch and Iterate: Reducing Prediction Churn |
Mahdi Milani Fard, Quentin Cormier, Kevin Robert Canini, Maya R. Gupta |
|
code |
-1 |
"Congruent" and "Opposite" Neurons: Sisters for Multisensory Integration and Segregation |
Wenhao Zhang, He Wang, K. Y. Michael Wong, Si Wu |
|
code |
-1 |
Learning shape correspondence with anisotropic convolutional neural networks |
Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Michael M. Bronstein |
|
code |
-1 |
Pairwise Choice Markov Chains |
Stephen Ragain, Johan Ugander |
|
code |
-1 |
NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization |
Davood Hajinezhad, Mingyi Hong, Tuo Zhao, Zhaoran Wang |
|
code |
-1 |
Clustering with Same-Cluster Queries |
Hassan Ashtiani, Shrinu Kushagra, Shai BenDavid |
|
code |
-1 |
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models |
S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray Kavukcuoglu, Geoffrey E. Hinton |
|
code |
-1 |
Parameter Learning for Log-supermodular Distributions |
Tatiana Shpakova, Francis R. Bach |
|
code |
-1 |
Deconvolving Feedback Loops in Recommender Systems |
Ayan Sinha, David F. Gleich, Karthik Ramani |
|
code |
-1 |
Structured Matrix Recovery via the Generalized Dantzig Selector |
Sheng Chen, Arindam Banerjee |
|
code |
-1 |
Confusions over Time: An Interpretable Bayesian Model to Characterize Trends in Decision Making |
Himabindu Lakkaraju, Jure Leskovec |
|
code |
-1 |
Automatic Neuron Detection in Calcium Imaging Data Using Convolutional Networks |
Noah J. Apthorpe, Alexander J. Riordan, Rob E. Aguilar, Jan Homann, Yi Gu, David W. Tank, H. Sebastian Seung |
|
code |
-1 |
Designing smoothing functions for improved worst-case competitive ratio in online optimization |
Reza Eghbali, Maryam Fazel |
|
code |
-1 |
Convergence guarantees for kernel-based quadrature rules in misspecified settings |
Motonobu Kanagawa, Bharath K. Sriperumbudur, Kenji Fukumizu |
|
code |
-1 |
Unsupervised Learning from Noisy Networks with Applications to Hi-C Data |
Bo Wang, Junjie Zhu, Armin Pourshafeie, Oana Ursu, Serafim Batzoglou, Anshul Kundaje |
|
code |
-1 |
A Non-generative Framework and Convex Relaxations for Unsupervised Learning |
Elad Hazan, Tengyu Ma |
|
code |
-1 |
Equality of Opportunity in Supervised Learning |
Moritz Hardt, Eric Price, Nati Srebro |
|
code |
-1 |
Scaled Least Squares Estimator for GLMs in Large-Scale Problems |
Murat A. Erdogdu, Lee H. Dicker, Mohsen Bayati |
|
code |
-1 |
Interpretable Nonlinear Dynamic Modeling of Neural Trajectories |
Yuan Zhao, Il Memming Park |
|
code |
-1 |
Search Improves Label for Active Learning |
Alina Beygelzimer, Daniel J. Hsu, John Langford, Chicheng Zhang |
|
code |
-1 |
Higher-Order Factorization Machines |
Mathieu Blondel, Akinori Fujino, Naonori Ueda, Masakazu Ishihata |
|
code |
-1 |
Exponential expressivity in deep neural networks through transient chaos |
Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha SohlDickstein, Surya Ganguli |
|
code |
-1 |
Split LBI: An Iterative Regularization Path with Structural Sparsity |
Chendi Huang, Xinwei Sun, Jiechao Xiong, Yuan Yao |
|
code |
-1 |
An equivalence between high dimensional Bayes optimal inference and M-estimation |
Madhu Advani, Surya Ganguli |
|
code |
-1 |
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks |
Anh Mai Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, Jeff Clune |
|
code |
-1 |
Deep Submodular Functions: Definitions and Learning |
Brian W. Dolhansky, Jeff A. Bilmes |
|
code |
-1 |
Discriminative Gaifman Models |
Mathias Niepert |
|
code |
-1 |
Leveraging Sparsity for Efficient Submodular Data Summarization |
Erik M. Lindgren, Shanshan Wu, Alexandros G. Dimakis |
|
code |
-1 |
Local Minimax Complexity of Stochastic Convex Optimization |
Sabyasachi Chatterjee, John C. Duchi, John D. Lafferty, Yuancheng Zhu |
|
code |
-1 |
Stochastic Optimization for Large-scale Optimal Transport |
Aude Genevay, Marco Cuturi, Gabriel Peyré, Francis R. Bach |
|
code |
-1 |
On Mixtures of Markov Chains |
Rishi Gupta, Ravi Kumar, Sergei Vassilvitskii |
|
code |
-1 |
Linear Contextual Bandits with Knapsacks |
Shipra Agrawal, Nikhil R. Devanur |
|
code |
-1 |
Reconstructing Parameters of Spreading Models from Partial Observations |
Andrey Y. Lokhov |
|
code |
-1 |
Spatiotemporal Residual Networks for Video Action Recognition |
Christoph Feichtenhofer, Axel Pinz, Richard P. Wildes |
|
code |
-1 |
Path-Normalized Optimization of Recurrent Neural Networks with ReLU Activations |
Behnam Neyshabur, Yuhuai Wu, Ruslan Salakhutdinov, Nati Srebro |
|
code |
-1 |
Strategic Attentive Writer for Learning Macro-Actions |
Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John P. Agapiou, Koray Kavukcuoglu |
|
code |
-1 |
The Limits of Learning with Missing Data |
Brian Bullins, Elad Hazan, Tomer Koren |
|
code |
-1 |
RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism |
Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, Walter F. Stewart |
|
code |
-1 |
Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers |
Veeranjaneyulu Sadhanala, YuXiang Wang, Ryan J. Tibshirani |
|
code |
-1 |
Community Detection on Evolving Graphs |
Aris Anagnostopoulos, Jakub Lacki, Silvio Lattanzi, Stefano Leonardi, Mohammad Mahdian |
|
code |
-1 |
Online and Differentially-Private Tensor Decomposition |
Yining Wang, Anima Anandkumar |
|
code |
-1 |
Dimension-Free Iteration Complexity of Finite Sum Optimization Problems |
Yossi Arjevani, Ohad Shamir |
|
code |
-1 |
Towards Conceptual Compression |
Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, Daan Wierstra |
|
code |
-1 |
Exact Recovery of Hard Thresholding Pursuit |
XiaoTong Yuan, Ping Li, Tong Zhang |
|
code |
-1 |
Data Programming: Creating Large Training Sets, Quickly |
Alexander J. Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, Christopher Ré |
|
code |
-1 |
Generalization of ERM in Stochastic Convex Optimization: The Dimension Strikes Back |
Vitaly Feldman |
|
code |
-1 |
Dynamic matrix recovery from incomplete observations under an exact low-rank constraint |
Liangbei Xu, Mark A. Davenport |
|
code |
-1 |
Fast Distributed Submodular Cover: Public-Private Data Summarization |
Baharan Mirzasoleiman, Morteza Zadimoghaddam, Amin Karbasi |
|
code |
-1 |
Estimating Nonlinear Neural Response Functions using GP Priors and Kronecker Methods |
Cristina Savin, Gasper Tkacik |
|
code |
-1 |
Lifelong Learning with Weighted Majority Votes |
Anastasia Pentina, Ruth Urner |
|
code |
-1 |
Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes |
Jack W. Rae, Jonathan J. Hunt, Ivo Danihelka, Timothy Harley, Andrew W. Senior, Gregory Wayne, Alex Graves, Tim Lillicrap |
|
code |
-1 |
Matching Networks for One Shot Learning |
Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, Daan Wierstra |
|
code |
-1 |
Tight Complexity Bounds for Optimizing Composite Objectives |
Blake E. Woodworth, Nati Srebro |
|
code |
-1 |
Graphical Time Warping for Joint Alignment of Multiple Curves |
Yizhi Wang, David J. Miller, Kira Poskanzer, Yue Wang, Lin Tian, Guoqiang Yu |
|
code |
-1 |
Unsupervised Risk Estimation Using Only Conditional Independence Structure |
Jacob Steinhardt, Percy Liang |
|
code |
-1 |
MetaGrad: Multiple Learning Rates in Online Learning |
Tim van Erven, Wouter M. Koolen |
|
code |
-1 |
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation |
Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, Josh Tenenbaum |
|
code |
-1 |
High Dimensional Structured Superposition Models |
Qilong Gu, Arindam Banerjee |
|
code |
-1 |
Joint quantile regression in vector-valued RKHSs |
Maxime Sangnier, Olivier Fercoq, Florence d'AlchéBuc |
|
code |
-1 |
The Forget-me-not Process |
Kieran Milan, Joel Veness, James Kirkpatrick, Michael H. Bowling, Anna Koop, Demis Hassabis |
|
code |
-1 |
Wasserstein Training of Restricted Boltzmann Machines |
Grégoire Montavon, KlausRobert Müller, Marco Cuturi |
|
code |
-1 |
Communication-Optimal Distributed Clustering |
Jiecao Chen, He Sun, David P. Woodruff, Qin Zhang |
|
code |
-1 |
Probing the Compositionality of Intuitive Functions |
Eric Schulz, Josh Tenenbaum, David Duvenaud, Maarten Speekenbrink, Samuel J. Gershman |
|
code |
-1 |
Ladder Variational Autoencoders |
Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, Ole Winther |
|
code |
-1 |
The Multiple Quantile Graphical Model |
Alnur Ali, J. Zico Kolter, Ryan J. Tibshirani |
|
code |
-1 |
Threshold Learning for Optimal Decision Making |
Nathan F. Lepora |
|
code |
-1 |
Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA |
Aapo Hyvärinen, Hiroshi Morioka |
|
code |
-1 |
Can Active Memory Replace Attention? |
Lukasz Kaiser, Samy Bengio |
|
code |
-1 |
Minimax Optimal Alternating Minimization for Kernel Nonparametric Tensor Learning |
Taiji Suzuki, Heishiro Kanagawa, Hayato Kobayashi, Nobuyuki Shimizu, Yukihiro Tagami |
|
code |
-1 |
The Product Cut |
Thomas Laurent, James H. von Brecht, Xavier Bresson, Arthur Szlam |
|
code |
-1 |
Learning Sparse Gaussian Graphical Models with Overlapping Blocks |
Mohammad Javad Hosseini, SuIn Lee |
|
code |
-1 |
Yggdrasil: An Optimized System for Training Deep Decision Trees at Scale |
Firas Abuzaid, Joseph K. Bradley, Feynman T. Liang, Andrew Feng, Lee Yang, Matei Zaharia, Ameet Talwalkar |
|
code |
-1 |
Average-case hardness of RIP certification |
Tengyao Wang, Quentin Berthet, Yaniv Plan |
|
code |
-1 |
A forward model at Purkinje cell synapses facilitates cerebellar anticipatory control |
Ivan Herreros, Xerxes D. Arsiwalla, Paul F. M. J. Verschure |
|
code |
-1 |
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering |
Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst |
|
code |
-1 |
CliqueCNN: Deep Unsupervised Exemplar Learning |
Miguel Ángel Bautista, Artsiom Sanakoyeu, Ekaterina Tikhoncheva, Björn Ommer |
|
code |
-1 |
Large-Scale Price Optimization via Network Flow |
Shinji Ito, Ryohei Fujimaki |
|
code |
-1 |
Online Pricing with Strategic and Patient Buyers |
Michal Feldman, Tomer Koren, Roi Livni, Yishay Mansour, Aviv Zohar |
|
code |
-1 |
Global Optimality of Local Search for Low Rank Matrix Recovery |
Srinadh Bhojanapalli, Behnam Neyshabur, Nati Srebro |
|
code |
-1 |
Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences |
Daniel Neil, Michael Pfeiffer, ShihChii Liu |
|
code |
-1 |
Improving PAC Exploration Using the Median Of Means |
Jason Pazis, Ronald Parr, Jonathan P. How |
|
code |
-1 |
Infinite Hidden Semi-Markov Modulated Interaction Point Process |
Peng Lin, Bang Zhang, Ting Guo, Yang Wang, Fang Chen |
|
code |
-1 |
Cooperative Inverse Reinforcement Learning |
Dylan HadfieldMenell, Stuart Russell, Pieter Abbeel, Anca D. Dragan |
|
code |
-1 |
Spatio-Temporal Hilbert Maps for Continuous Occupancy Representation in Dynamic Environments |
Ransalu Senanayake, Lionel Ott, Simon Timothy O'Callaghan, Fabio Tozeto Ramos |
|
code |
-1 |
Select-and-Sample for Spike-and-Slab Sparse Coding |
AbdulSaboor Sheikh, Jörg Lücke |
|
code |
-1 |
Tractable Operations for Arithmetic Circuits of Probabilistic Models |
Yujia Shen, Arthur Choi, Adnan Darwiche |
|
code |
-1 |
Greedy Feature Construction |
Dino Oglic, Thomas Gärtner |
|
code |
-1 |
Mistake Bounds for Binary Matrix Completion |
Mark Herbster, Stephen Pasteris, Massimiliano Pontil |
|
code |
-1 |
Data driven estimation of Laplace-Beltrami operator |
Frédéric Chazal, Ilaria Giulini, Bertrand Michel |
|
code |
-1 |
Tracking the Best Expert in Non-stationary Stochastic Environments |
ChenYu Wei, YiTe Hong, ChiJen Lu |
|
code |
-1 |
Learning to learn by gradient descent by gradient descent |
Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W. Hoffman, David Pfau, Tom Schaul, Nando de Freitas |
|
code |
-1 |
Kernel Observers: Systems-Theoretic Modeling and Inference of Spatiotemporally Evolving Processes |
Hassan A. Kingravi, Harshal R. Maske, Girish Chowdhary |
|
code |
-1 |
Quantum Perceptron Models |
Ashish Kapoor, Nathan Wiebe, Krysta M. Svore |
|
code |
-1 |
Guided Policy Search via Approximate Mirror Descent |
William H. Montgomery, Sergey Levine |
|
code |
-1 |
The Power of Optimization from Samples |
Eric Balkanski, Aviad Rubinstein, Yaron Singer |
|
code |
-1 |
Deep Exploration via Bootstrapped DQN |
Ian Osband, Charles Blundell, Alexander Pritzel, Benjamin Van Roy |
|
code |
-1 |
A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization |
Jingwei Liang, Jalal Fadili, Gabriel Peyré |
|
code |
-1 |
Scaling Factorial Hidden Markov Models: Stochastic Variational Inference without Messages |
Yin Cheng Ng, Pawel M. Chilinski, Ricardo Silva |
|
code |
-1 |
Convolutional Neural Fabrics |
Shreyas Saxena, Jakob Verbeek |
|
code |
-1 |
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy |
Aryan Mokhtari, Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann, Alejandro Ribeiro |
|
code |
-1 |
A Sparse Interactive Model for Matrix Completion with Side Information |
Jin Lu, Guannan Liang, Jiangwen Sun, Jinbo Bi |
|
code |
-1 |
Coresets for Scalable Bayesian Logistic Regression |
Jonathan H. Huggins, Trevor Campbell, Tamara Broderick |
|
code |
-1 |
Agnostic Estimation for Misspecified Phase Retrieval Models |
Matey Neykov, Zhaoran Wang, Han Liu |
|
code |
-1 |
Linear Relaxations for Finding Diverse Elements in Metric Spaces |
Aditya Bhaskara, Mehrdad Ghadiri, Vahab S. Mirrokni, Ola Svensson |
|
code |
-1 |
Binarized Neural Networks |
Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran ElYaniv, Yoshua Bengio |
|
code |
-1 |
Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences |
Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, Michael I. Jordan |
|
code |
-1 |
Memory-Efficient Backpropagation Through Time |
Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, Alex Graves |
|
code |
-1 |
Bayesian Optimization with Robust Bayesian Neural Networks |
Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, Frank Hutter |
|
code |
-1 |
Learnable Visual Markers |
Oleg Grinchuk, Vadim Lebedev, Victor S. Lempitsky |
|
code |
-1 |
Fast Algorithms for Robust PCA via Gradient Descent |
Xinyang Yi, Dohyung Park, Yudong Chen, Constantine Caramanis |
|
code |
-1 |
One-vs-Each Approximation to Softmax for Scalable Estimation of Probabilities |
Michalis K. Titsias |
|
code |
-1 |
Learning Deep Embeddings with Histogram Loss |
Evgeniya Ustinova, Victor S. Lempitsky |
|
code |
-1 |
Spectral Learning of Dynamic Systems from Nonequilibrium Data |
Hao Wu, Frank Noé |
|
code |
-1 |
Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling |
Chengtao Li, Suvrit Sra, Stefanie Jegelka |
|
code |
-1 |
Mapping Estimation for Discrete Optimal Transport |
Michaël Perrot, Nicolas Courty, Rémi Flamary, Amaury Habrard |
|
code |
-1 |
Batched Gaussian Process Bandit Optimization via Determinantal Point Processes |
Tarun Kathuria, Amit Deshpande, Pushmeet Kohli |
|
code |
-1 |
Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images |
Vladimir Golkov, Marcin J. Skwark, Antonij Golkov, Alexey Dosovitskiy, Thomas Brox, Jens Meiler, Daniel Cremers |
|
code |
-1 |
Linear Feature Encoding for Reinforcement Learning |
Zhao Song, Ronald E. Parr, Xuejun Liao, Lawrence Carin |
|
code |
-1 |
A Minimax Approach to Supervised Learning |
Farzan Farnia, David Tse |
|
code |
-1 |
Edge-exchangeable graphs and sparsity |
Diana Cai, Trevor Campbell, Tamara Broderick |
|
code |
-1 |
A Locally Adaptive Normal Distribution |
Georgios Arvanitidis, Lars Kai Hansen, Søren Hauberg |
|
code |
-1 |
Completely random measures for modelling block-structured sparse networks |
Tue Herlau, Mikkel N. Schmidt, Morten Mørup |
|
code |
-1 |
Sparse Support Recovery with Non-smooth Loss Functions |
Kévin Degraux, Gabriel Peyré, Jalal Fadili, Laurent Jacques |
|
code |
-1 |
Neurons Equipped with Intrinsic Plasticity Learn Stimulus Intensity Statistics |
Travis Monk, Cristina Savin, Jörg Lücke |
|
code |
-1 |
Learning values across many orders of magnitude |
Hado van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, David Silver |
|
code |
-1 |
Adaptive Smoothed Online Multi-Task Learning |
Keerthiram Murugesan, Hanxiao Liu, Jaime G. Carbonell, Yiming Yang |
|
code |
-1 |
Safe Exploration in Finite Markov Decision Processes with Gaussian Processes |
Matteo Turchetta, Felix Berkenkamp, Andreas Krause |
|
code |
-1 |
Probabilistic Linear Multistep Methods |
Onur Teymur, Konstantinos Zygalakis, Ben Calderhead |
|
code |
-1 |
Stochastic Three-Composite Convex Minimization |
Alp Yurtsever, Bang Công Vu, Volkan Cevher |
|
code |
-1 |
Using Fast Weights to Attend to the Recent Past |
Jimmy Ba, Geoffrey E. Hinton, Volodymyr Mnih, Joel Z. Leibo, Catalin Ionescu |
|
code |
-1 |
Maximal Sparsity with Deep Networks? |
Bo Xin, Yizhou Wang, Wen Gao, David P. Wipf, Baoyuan Wang |
|
code |
-1 |
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings |
Tolga Bolukbasi, KaiWei Chang, James Y. Zou, Venkatesh Saligrama, Adam Tauman Kalai |
|
code |
-1 |
beta-risk: a New Surrogate Risk for Learning from Weakly Labeled Data |
Valentina Zantedeschi, Rémi Emonet, Marc Sebban |
|
code |
-1 |
Learning Additive Exponential Family Graphical Models via \ell_{2, 1}-norm Regularized M-Estimation |
XiaoTong Yuan, Ping Li, Tong Zhang, Qingshan Liu, Guangcan Liu |
|
code |
-1 |
Backprop KF: Learning Discriminative Deterministic State Estimators |
Tuomas Haarnoja, Anurag Ajay, Sergey Levine, Pieter Abbeel |
|
code |
-1 |
LightRNN: Memory and Computation-Efficient Recurrent Neural Networks |
Xiang Li, Tao Qin, Jian Yang, TieYan Liu |
|
code |
-1 |
Fast recovery from a union of subspaces |
Chinmay Hegde, Piotr Indyk, Ludwig Schmidt |
|
code |
-1 |
Incremental Variational Sparse Gaussian Process Regression |
ChingAn Cheng, Byron Boots |
|
code |
-1 |
A Consistent Regularization Approach for Structured Prediction |
Carlo Ciliberto, Lorenzo Rosasco, Alessandro Rudi |
|
code |
-1 |
Clustering Signed Networks with the Geometric Mean of Laplacians |
Pedro Mercado, Francesco Tudisco, Matthias Hein |
|
code |
-1 |
An urn model for majority voting in classification ensembles |
Víctor Soto, Alberto Suárez, Gonzalo MartínezMuñoz |
|
code |
-1 |
Avoiding Imposters and Delinquents: Adversarial Crowdsourcing and Peer Prediction |
Jacob Steinhardt, Gregory Valiant, Moses Charikar |
|
code |
-1 |
Fast and accurate spike sorting of high-channel count probes with KiloSort |
Marius Pachitariu, Nicholas A. Steinmetz, Shabnam N. Kadir, Matteo Carandini, Kenneth D. Harris |
|
code |
-1 |
Combining Adversarial Guarantees and Stochastic Fast Rates in Online Learning |
Wouter M. Koolen, Peter Grünwald, Tim van Erven |
|
code |
-1 |
Ancestral Causal Inference |
Sara Magliacane, Tom Claassen, Joris M. Mooij |
|
code |
-1 |
More Supervision, Less Computation: Statistical-Computational Tradeoffs in Weakly Supervised Learning |
Xinyang Yi, Zhaoran Wang, Zhuoran Yang, Constantine Caramanis, Han Liu |
|
code |
-1 |
Tagger: Deep Unsupervised Perceptual Grouping |
Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hotloo Hao, Harri Valpola, Jürgen Schmidhuber |
|
code |
-1 |
An Efficient Streaming Algorithm for the Submodular Cover Problem |
Ashkan NorouziFard, Abbas Bazzi, Ilija Bogunovic, Marwa El Halabi, YaPing Hsieh, Volkan Cevher |
|
code |
-1 |
Interaction Networks for Learning about Objects, Relations and Physics |
Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, Koray Kavukcuoglu |
|
code |
-1 |
Efficient state-space modularization for planning: theory, behavioral and neural signatures |
Daniel McNamee, Daniel M. Wolpert, Máté Lengyel |
|
code |
-1 |
Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent |
Chi Jin, Sham M. Kakade, Praneeth Netrapalli |
|
code |
-1 |
Online Bayesian Moment Matching for Topic Modeling with Unknown Number of Topics |
WeiShou Hsu, Pascal Poupart |
|
code |
-1 |
Computing and maximizing influence in linear threshold and triggering models |
Justin T. Khim, Varun S. Jog, PoLing Loh |
|
code |
-1 |
Coevolutionary Latent Feature Processes for Continuous-Time User-Item Interactions |
Yichen Wang, Nan Du, Rakshit Trivedi, Le Song |
|
code |
-1 |
Optimal Learning for Multi-pass Stochastic Gradient Methods |
Junhong Lin, Lorenzo Rosasco |
|
code |
-1 |
Generative Adversarial Imitation Learning |
Jonathan Ho, Stefano Ermon |
|
code |
-1 |
Latent Attention For If-Then Program Synthesis |
Chang Liu, Xinyun Chen, Eui Chul Richard Shin, Mingcheng Chen, Dawn Xiaodong Song |
|
code |
-1 |
Dual Space Gradient Descent for Online Learning |
Trung Le, Tu Dinh Nguyen, Vu Nguyen, Dinh Q. Phung |
|
code |
-1 |
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds |
Hongyi Zhang, Sashank J. Reddi, Suvrit Sra |
|
code |
-1 |
Professor Forcing: A New Algorithm for Training Recurrent Networks |
Anirudh Goyal, Alex Lamb, Ying Zhang, Saizheng Zhang, Aaron C. Courville, Yoshua Bengio |
|
code |
-1 |
Learning brain regions via large-scale online structured sparse dictionary learning |
Elvis Dohmatob, Arthur Mensch, Gaël Varoquaux, Bertrand Thirion |
|
code |
-1 |
Efficient Neural Codes under Metabolic Constraints |
Zhuo Wang, XueXin Wei, Alan A. Stocker, Daniel D. Lee |
|
code |
-1 |
Approximate maximum entropy principles via Goemans-Williamson with applications to provable variational methods |
Andrej Risteski, Yuanzhi Li |
|
code |
-1 |
Efficient High-Order Interaction-Aware Feature Selection Based on Conditional Mutual Information |
Alexander Shishkin, Anastasia A. Bezzubtseva, Alexey Drutsa, Ilia Shishkov, Ekaterina Gladkikh, Gleb Gusev, Pavel Serdyukov |
|
code |
-1 |
Bayesian Intermittent Demand Forecasting for Large Inventories |
Matthias W. Seeger, David Salinas, Valentin Flunkert |
|
code |
-1 |
Visual Question Answering with Question Representation Update (QRU) |
Ruiyu Li, Jiaya Jia |
|
code |
-1 |
Learning Parametric Sparse Models for Image Super-Resolution |
Yongbo Li, Weisheng Dong, Xuemei Xie, Guangming Shi, Xin Li, Donglai Xu |
|
code |
-1 |
Blazing the trails before beating the path: Sample-efficient Monte-Carlo planning |
JeanBastien Grill, Michal Valko, Rémi Munos |
|
code |
-1 |
Asynchronous Parallel Greedy Coordinate Descent |
Yang You, Xiangru Lian, Ji Liu, HsiangFu Yu, Inderjit S. Dhillon, James Demmel, ChoJui Hsieh |
|
code |
-1 |
Iterative Refinement of the Approximate Posterior for Directed Belief Networks |
R. Devon Hjelm, Russ Salakhutdinov, Kyunghyun Cho, Nebojsa Jojic, Vince D. Calhoun, Junyoung Chung |
|
code |
-1 |
Assortment Optimization Under the Mallows model |
Antoine Désir, Vineet Goyal, Srikanth Jagabathula, Danny Segev |
|
code |
-1 |
Disease Trajectory Maps |
Peter Schulam, Raman Arora |
|
code |
-1 |
Multistage Campaigning in Social Networks |
Mehrdad Farajtabar, Xiaojing Ye, Sahar Harati, Le Song, Hongyuan Zha |
|
code |
-1 |
Learning in Games: Robustness of Fast Convergence |
Dylan J. Foster, Zhiyuan Li, Thodoris Lykouris, Karthik Sridharan, Éva Tardos |
|
code |
-1 |
Improving Variational Autoencoders with Inverse Autoregressive Flow |
Diederik P. Kingma, Tim Salimans, Rafal Józefowicz, Xi Chen, Ilya Sutskever, Max Welling |
|
code |
-1 |
Algorithms and matching lower bounds for approximately-convex optimization |
Andrej Risteski, Yuanzhi Li |
|
code |
-1 |
Unified Methods for Exploiting Piecewise Linear Structure in Convex Optimization |
Tyler B. Johnson, Carlos Guestrin |
|
code |
-1 |
Kernel Bayesian Inference with Posterior Regularization |
Yang Song, Jun Zhu, Yong Ren |
|
code |
-1 |
Neural Universal Discrete Denoiser |
Taesup Moon, Seonwoo Min, Byunghan Lee, Sungroh Yoon |
|
code |
-1 |
Optimal Architectures in a Solvable Model of Deep Networks |
Jonathan Kadmon, Haim Sompolinsky |
|
code |
-1 |
Conditional Image Generation with PixelCNN Decoders |
Aäron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Koray Kavukcuoglu, Oriol Vinyals, Alex Graves |
|
code |
-1 |
Supervised Learning with Tensor Networks |
Edwin Miles Stoudenmire, David J. Schwab |
|
code |
-1 |
Multi-step learning and underlying structure in statistical models |
Maia Fraser |
|
code |
-1 |
Structure-Blind Signal Recovery |
Dmitry Ostrovsky, Zaïd Harchaoui, Anatoli B. Juditsky, Arkadi Nemirovski |
|
code |
-1 |
An Architecture for Deep, Hierarchical Generative Models |
Philip Bachman |
|
code |
-1 |
Feature selection in functional data classification with recursive maxima hunting |
José L. Torrecilla, Alberto Suárez |
|
code |
-1 |
Achieving budget-optimality with adaptive schemes in crowdsourcing |
Ashish Khetan, Sewoong Oh |
|
code |
-1 |
Near-Optimal Smoothing of Structured Conditional Probability Matrices |
Moein Falahatgar, Mesrob I. Ohannessian, Alon Orlitsky |
|
code |
-1 |
Supervised Word Mover's Distance |
Gao Huang, Chuan Guo, Matt J. Kusner, Yu Sun, Fei Sha, Kilian Q. Weinberger |
|
code |
-1 |
Exploiting Tradeoffs for Exact Recovery in Heterogeneous Stochastic Block Models |
Amin Jalali, Qiyang Han, Ioana Dumitriu, Maryam Fazel |
|
code |
-1 |
Full-Capacity Unitary Recurrent Neural Networks |
Scott Wisdom, Thomas Powers, John R. Hershey, Jonathan Le Roux, Les E. Atlas |
|
code |
-1 |
Threshold Bandits, With and Without Censored Feedback |
Jacob D. Abernethy, Kareem Amin, Ruihao Zhu |
|
code |
-1 |
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks |
Wenjie Luo, Yujia Li, Raquel Urtasun, Richard S. Zemel |
|
code |
-1 |
Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods |
Lev Bogolubsky, Pavel E. Dvurechensky, Alexander V. Gasnikov, Gleb Gusev, Yurii E. Nesterov, Andrei M. Raigorodskii, Aleksey Tikhonov, Maksim Zhukovskii |
|
code |
-1 |
k*-Nearest Neighbors: From Global to Local |
Oren Anava, Kfir Y. Levy |
|
code |
-1 |
Normalized Spectral Map Synchronization |
Yanyao Shen, Qixing Huang, Nati Srebro, Sujay Sanghavi |
|
code |
-1 |
Beyond Exchangeability: The Chinese Voting Process |
Moontae Lee, Seok Hyun Jin, David M. Mimno |
|
code |
-1 |
A posteriori error bounds for joint matrix decomposition problems |
Nicolò Colombo, Nikos Vlassis |
|
code |
-1 |
A Bayesian method for reducing bias in neural representational similarity analysis |
Mingbo Cai, Nicolas W. Schuck, Jonathan W. Pillow, Yael Niv |
|
code |
-1 |
Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes |
Chris Junchi Li, Zhaoran Wang, Han Liu |
|
code |
-1 |
Following the Leader and Fast Rates in Linear Prediction: Curved Constraint Sets and Other Regularities |
Ruitong Huang, Tor Lattimore, András György, Csaba Szepesvári |
|
code |
-1 |
SDP Relaxation with Randomized Rounding for Energy Disaggregation |
Kiarash Shaloudegi, András György, Csaba Szepesvári, Wilsun Xu |
|
code |
-1 |
Recovery Guarantee of Non-negative Matrix Factorization via Alternating Updates |
Yuanzhi Li, Yingyu Liang, Andrej Risteski |
|
code |
-1 |
Unsupervised Learning of 3D Structure from Images |
Danilo Jimenez Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter W. Battaglia, Max Jaderberg, Nicolas Heess |
|
code |
-1 |
Poisson-Gamma dynamical systems |
Aaron Schein, Hanna M. Wallach, Mingyuan Zhou |
|
code |
-1 |
Gaussian Processes for Survival Analysis |
Tamara Fernandez, Nicolas Rivera, Yee Whye Teh |
|
code |
-1 |
Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain |
Ian EnHsu Yen, Xiangru Huang, Kai Zhong, Ruohan Zhang, Pradeep Ravikumar, Inderjit S. Dhillon |
|
code |
-1 |
Optimal Binary Classifier Aggregation for General Losses |
Akshay Balsubramani, Yoav Freund |
|
code |
-1 |
Disentangling factors of variation in deep representation using adversarial training |
Michaël Mathieu, Junbo Jake Zhao, Pablo Sprechmann, Aditya Ramesh, Yann LeCun |
|
code |
-1 |
A primal-dual method for conic constrained distributed optimization problems |
Necdet Serhat Aybat, Erfan Yazdandoost Hamedani |
|
code |
-1 |
Fundamental Limits of Budget-Fidelity Trade-off in Label Crowdsourcing |
Farshad Lahouti, Babak Hassibi |
|
code |
-1 |
An Online Sequence-to-Sequence Model Using Partial Conditioning |
Navdeep Jaitly, Quoc V. Le, Oriol Vinyals, Ilya Sutskever, David Sussillo, Samy Bengio |
|
code |
-1 |
Learning Deep Parsimonious Representations |
Renjie Liao, Alexander G. Schwing, Richard S. Zemel, Raquel Urtasun |
|
code |
-1 |
Cyclades: Conflict-free Asynchronous Machine Learning |
|
|
code |
-1 |
Learning to Poke by Poking: Experiential Learning of Intuitive Physics |
|
|
code |
-1 |
Only H is left: Near-tight Episodic PAC RL |
|
|
code |
-1 |