Skip to content

Latest commit

 

History

History
1430 lines (1429 loc) · 489 KB

nips2019.md

File metadata and controls

1430 lines (1429 loc) · 489 KB

NIPS2019 Paper List

论文 作者 摘要 代码 引用数
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation Risto Vuorio, ShaoHua Sun, Hexiang Hu, Joseph J. Lim code -1
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks Jiasen Lu, Dhruv Batra, Devi Parikh, Stefan Lee code -1
Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers Liwei Wu, Shuqing Li, ChoJui Hsieh, James L. Sharpnack code -1
Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, MingMing Cheng, Ian D. Reid code -1
Zero-shot Learning via Simultaneous Generating and Learning Hyeonwoo Yu, Beomhee Lee code -1
Ask not what AI can do, but what AI should do: Towards a framework of task delegability Brian Lubars, Chenhao Tan code -1
Stand-Alone Self-Attention in Vision Models Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan Bello, Anselm Levskaya code -1
High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks Ruben Villegas, Arkanath Pathak, Harini Kannan, Dumitru Erhan, Quoc V. Le, Honglak Lee code -1
Unsupervised learning of object structure and dynamics from videos Matthias Minderer, Chen Sun, Ruben Villegas, Forrester Cole, Kevin P. Murphy, Honglak Lee code -1
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, Zhifeng Chen code -1
Meta-Learning with Implicit Gradients Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, Sergey Levine code -1
Adversarial Examples Are Not Bugs, They Are Features Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, Aleksander Madry code -1
Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks Vineet Kosaraju, Amir Sadeghian, Roberto MartínMartín, Ian D. Reid, Hamid Rezatofighi, Silvio Savarese code -1
FreeAnchor: Learning to Match Anchors for Visual Object Detection Xiaosong Zhang, Fang Wan, Chang Liu, Rongrong Ji, Qixiang Ye code -1
Private Hypothesis Selection Mark Bun, Gautam Kamath, Thomas Steinke, Zhiwei Steven Wu code -1
Differentially Private Algorithms for Learning Mixtures of Separated Gaussians Gautam Kamath, Or Sheffet, Vikrant Singhal, Jonathan R. Ullman code -1
Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation Mark Bun, Thomas Steinke code -1
Multi-Resolution Weak Supervision for Sequential Data Paroma Varma, Frederic Sala, Shiori Sagawa, Jason Alan Fries, Daniel Y. Fu, Saelig Khattar, Ashwini Ramamoorthy, Ke Xiao, Kayvon Fatahalian, James Priest, Christopher Ré code -1
DeepUSPS: Deep Robust Unsupervised Saliency Prediction via Self-supervision Duc Tam Nguyen, Maximilian Dax, Chaithanya Kumar Mummadi, ThiPhuongNhung Ngo, Thi Hoai Phuong Nguyen, Zhongyu Lou, Thomas Brox code -1
The Point Where Reality Meets Fantasy: Mixed Adversarial Generators for Image Splice Detection Vladimir V. Kniaz, Vladimir A. Knyaz, Fabio Remondino code -1
You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, Bin Dong code -1
Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, Chuang Gan code -1
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance Kimia Nadjahi, Alain Durmus, Umut Simsekli, Roland Badeau code -1
Generalized Sliced Wasserstein Distances Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, Gustavo K. Rohde code -1
First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise Thanh Huy Nguyen, Umut Simsekli, Mert Gürbüzbalaban, Gaël Richard code -1
Blind Super-Resolution Kernel Estimation using an Internal-GAN Sefi BellKligler, Assaf Shocher, Michal Irani code -1
Noise-tolerant fair classification Alexandre Louis Lamy, Ziyuan Zhong code -1
Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection Bingzhe Wu, Shiwan Zhao, Chaochao Chen, Haoyang Xu, Li Wang, Xiaolu Zhang, Guangyu Sun, Jun Zhou code -1
Joint-task Self-supervised Learning for Temporal Correspondence Xueting Li, Sifei Liu, Shalini De Mello, Xiaolong Wang, Jan Kautz, MingHsuan Yang code -1
Provable Gradient Variance Guarantees for Black-Box Variational Inference Justin Domke code -1
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation Justin Domke, Daniel Sheldon code -1
Experience Replay for Continual Learning David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, Gregory Wayne code -1
Deep ReLU Networks Have Surprisingly Few Activation Patterns Boris Hanin, David Rolnick code -1
Chasing Ghosts: Instruction Following as Bayesian State Tracking Peter Anderson, Ayush Shrivastava, Devi Parikh, Dhruv Batra, Stefan Lee code -1
Block Coordinate Regularization by Denoising Yu Sun, Jiaming Liu, Ulugbek Kamilov code -1
Reducing Noise in GAN Training with Variance Reduced Extragradient Tatjana Chavdarova, Gauthier Gidel, François Fleuret, Simon LacosteJulien code -1
Learning Erdos-Renyi Random Graphs via Edge Detecting Queries Zihan Li, Matthias Fresacher, Jonathan Scarlett code -1
A Primal-Dual link between GANs and Autoencoders Hisham Husain, Richard Nock, Robert C. Williamson code -1
muSSP: Efficient Min-cost Flow Algorithm for Multi-object Tracking Congchao Wang, Yizhi Wang, Yinxue Wang, ChiungTing Wu, Guoqiang Yu code -1
Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation Qiming Zhang, Jing Zhang, Wei Liu, Dacheng Tao code -1
Invert to Learn to Invert Patrick Putzky, Max Welling code -1
Equitable Stable Matchings in Quadratic Time Nikolaos Tziavelis, Ioannis Giannakopoulos, Katerina Doka, Nectarios Koziris, Panagiotis Karras code -1
Zero-Shot Semantic Segmentation Maxime Bucher, TuanHung Vu, Matthieu Cord, Patrick Pérez code -1
Metric Learning for Adversarial Robustness Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, Baishakhi Ray code -1
DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomír Mech, Ulrich Neumann code -1
Batched Multi-armed Bandits Problem Zijun Gao, Yanjun Han, Zhimei Ren, Zhengqing Zhou code -1
vGraph: A Generative Model for Joint Community Detection and Node Representation Learning FanYun Sun, Meng Qu, Jordan Hoffmann, ChinWei Huang, Jian Tang code -1
Differentially Private Bayesian Linear Regression Garrett Bernstein, Daniel Sheldon code -1
Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos Yitian Yuan, Lin Ma, Jingwen Wang, Wei Liu, Wenwu Zhu code -1
AGEM: Solving Linear Inverse Problems via Deep Priors and Sampling Bichuan Guo, Yuxing Han, Jiangtao Wen code -1
CPM-Nets: Cross Partial Multi-View Networks Changqing Zhang, Zongbo Han, Yajie Cui, Huazhu Fu, Joey Tianyi Zhou, Qinghua Hu code -1
Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis Xihui Liu, Guojun Yin, Jing Shao, Xiaogang Wang, Hongsheng Li code -1
Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling Andrey Kolobov, Yuval Peres, Cheng Lu, Eric Horvitz code -1
SySCD: A System-Aware Parallel Coordinate Descent Algorithm Nikolas Ioannou, Celestine MendlerDünner, Thomas P. Parnell code -1
Importance Weighted Hierarchical Variational Inference Artem Sobolev, Dmitry P. Vetrov code -1
RSN: Randomized Subspace Newton Robert M. Gower, Dmitry Kovalev, Felix Lieder, Peter Richtárik code -1
Trust Region-Guided Proximal Policy Optimization Yuhui Wang, Hao He, Xiaoyang Tan, Yaozhong Gan code -1
Adversarial Self-Defense for Cycle-Consistent GANs Dina Bashkirova, Ben Usman, Kate Saenko code -1
Towards closing the gap between the theory and practice of SVRG Othmane Sebbouh, Nidham Gazagnadou, Samy Jelassi, Francis R. Bach, Robert M. Gower code -1
Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control Armin Lederer, Jonas Umlauft, Sandra Hirche code -1
ETNet: Error Transition Network for Arbitrary Style Transfer Chunjin Song, Zhijie Wu, Yang Zhou, Minglun Gong, Hui Huang code -1
No Pressure! Addressing the Problem of Local Minima in Manifold Learning Algorithms Max Vladymyrov code -1
Deep Equilibrium Models Shaojie Bai, J. Zico Kolter, Vladlen Koltun code -1
Saccader: Improving Accuracy of Hard Attention Models for Vision Gamaleldin F. Elsayed, Simon Kornblith, Quoc V. Le code -1
Multiway clustering via tensor block models Miaoyan Wang, Yuchen Zeng code -1
Regret Minimization for Reinforcement Learning with Vectorial Feedback and Complex Objectives Wang Chi Cheung code -1
NAT: Neural Architecture Transformer for Accurate and Compact Architectures Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, Junzhou Huang code -1
Selecting Optimal Decisions via Distributionally Robust Nearest-Neighbor Regression Ruidi Chen, Ioannis Ch. Paschalidis code -1
Network Pruning via Transformable Architecture Search Xuanyi Dong, Yi Yang code -1
Differentiable Cloth Simulation for Inverse Problems Junbang Liang, Ming C. Lin, Vladlen Koltun code -1
Poisson-Randomized Gamma Dynamical Systems Aaron Schein, Scott W. Linderman, Mingyuan Zhou, David M. Blei, Hanna M. Wallach code -1
Volumetric Correspondence Networks for Optical Flow Gengshan Yang, Deva Ramanan code -1
Learning Conditional Deformable Templates with Convolutional Networks Adrian V. Dalca, Marianne Rakic, John V. Guttag, Mert R. Sabuncu code -1
Fast Low-rank Metric Learning for Large-scale and High-dimensional Data Han Liu, Zhizhong Han, YuShen Liu, Ming Gu code -1
Efficient Symmetric Norm Regression via Linear Sketching Zhao Song, Ruosong Wang, Lin F. Yang, Hongyang Zhang, Peilin Zhong code -1
RUBi: Reducing Unimodal Biases for Visual Question Answering Rémi Cadène, Corentin Dancette, Hédi BenYounes, Matthieu Cord, Devi Parikh code -1
Why Can't I Dance in the Mall? Learning to Mitigate Scene Bias in Action Recognition Jinwoo Choi, Chen Gao, Joseph C. E. Messou, JiaBin Huang code -1
NeurVPS: Neural Vanishing Point Scanning via Conic Convolution Yichao Zhou, Haozhi Qi, Jingwei Huang, Yi Ma code -1
DATA: Differentiable ArchiTecture Approximation Jianlong Chang, Xinbang Zhang, Yiwen Guo, Gaofeng Meng, Shiming Xiang, Chunhong Pan code -1
Learn, Imagine and Create: Text-to-Image Generation from Prior Knowledge Tingting Qiao, Jing Zhang, Duanqing Xu, Dacheng Tao code -1
Memory-oriented Decoder for Light Field Salient Object Detection Miao Zhang, Jingjing Li, Ji Wei, Yongri Piao, Huchuan Lu code -1
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition Xuesong Niu, Hu Han, Shiguang Shan, Xilin Chen code -1
Correlated Uncertainty for Learning Dense Correspondences from Noisy Labels Natalia Neverova, David Novotný, Andrea Vedaldi code -1
Powerset Convolutional Neural Networks Chris Wendler, Markus Püschel, Dan Alistarh code -1
Optimal Pricing in Repeated Posted-Price Auctions with Different Patience of the Seller and the Buyer Arsenii Vanunts, Alexey Drutsa code -1
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums Hadrien Hendrikx, Francis R. Bach, Laurent Massoulié code -1
Point-Voxel CNN for Efficient 3D Deep Learning Zhijian Liu, Haotian Tang, Yujun Lin, Song Han code -1
Deep Learning without Weight Transport Mohamed Akrout, Collin Wilson, Peter C. Humphreys, Timothy P. Lillicrap, Douglas B. Tweed code -1
Combinatorial Bandits with Relative Feedback Aadirupa Saha, Aditya Gopalan code -1
General Proximal Incremental Aggregated Gradient Algorithms: Better and Novel Results under General Scheme Tao Sun, Yuejiao Sun, Dongsheng Li, Qing Liao code -1
A Condition Number for Joint Optimization of Cycle-Consistent Networks Leonidas J. Guibas, Qixing Huang, Zhenxiao Liang code -1
Explicit Disentanglement of Appearance and Perspective in Generative Models Nicki Skafte Detlefsen, Søren Hauberg code -1
Polynomial Cost of Adaptation for X-Armed Bandits Hédi Hadiji code -1
Learning to Propagate for Graph Meta-Learning Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang code -1
Secretary Ranking with Minimal Inversions Sepehr Assadi, Eric Balkanski, Renato Paes Leme code -1
Nonparametric Regressive Point Processes Based on Conditional Gaussian Processes Siqi Liu, Milos Hauskrecht code -1
Learning Perceptual Inference by Contrasting Chi Zhang, Baoxiong Jia, Feng Gao, Yixin Zhu, Hongjing Lu, SongChun Zhu code -1
Selecting the independent coordinates of manifolds with large aspect ratios YuChia Chen, Marina Meila code -1
Region-specific Diffeomorphic Metric Mapping Zhengyang Shen, FrançoisXavier Vialard, Marc Niethammer code -1
Deep Supervised Summarization: Algorithm and Application to Learning Instructions Chengguang Xu, Ehsan Elhamifar code -1
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations Vincent Sitzmann, Michael Zollhöfer, Gordon Wetzstein code -1
Reconciling λ-Returns with Experience Replay Brett Daley, Christopher Amato code -1
Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence Fengxiang He, Tongliang Liu, Dacheng Tao code -1
Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs Max Simchowitz, Kevin G. Jamieson code -1
A Graph Theoretic Framework of Recomputation Algorithms for Memory-Efficient Backpropagation Mitsuru Kusumoto, Takuya Inoue, Gentaro Watanabe, Takuya Akiba, Masanori Koyama code -1
Combinatorial Inference against Label Noise Paul Hongsuck Seo, Geeho Kim, Bohyung Han code -1
Value Propagation for Decentralized Networked Deep Multi-agent Reinforcement Learning Chao Qu, Shie Mannor, Huan Xu, Yuan Qi, Le Song, Junwu Xiong code -1
Convolution with even-sized kernels and symmetric padding Shuang Wu, Guanrui Wang, Pei Tang, Feng Chen, Luping Shi code -1
On The Classification-Distortion-Perception Tradeoff Dong Liu, Haochen Zhang, Zhiwei Xiong code -1
Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up Dominic Richards, Patrick Rebeschini code -1
Online sampling from log-concave distributions Holden Lee, Oren Mangoubi, Nisheeth K. Vishnoi code -1
Envy-Free Classification MariaFlorina Balcan, Travis Dick, Ritesh Noothigattu, Ariel D. Procaccia code -1
Finding Friend and Foe in Multi-Agent Games Jack Serrino, Max KleimanWeiner, David C. Parkes, Josh Tenenbaum code -1
Image Synthesis with a Single (Robust) Classifier Shibani Santurkar, Andrew Ilyas, Dimitris Tsipras, Logan Engstrom, Brandon Tran, Aleksander Madry code -1
Model Compression with Adversarial Robustness: A Unified Optimization Framework Shupeng Gui, Haotao Wang, Haichuan Yang, Chen Yu, Zhangyang Wang, Ji Liu code -1
Cross-channel Communication Networks Jianwei Yang, Zhile Ren, Chuang Gan, Hongyuan Zhu, Devi Parikh code -1
CondConv: Conditionally Parameterized Convolutions for Efficient Inference Brandon Yang, Gabriel Bender, Quoc V. Le, Jiquan Ngiam code -1
Regression Planning Networks Danfei Xu, Roberto MartínMartín, DeAn Huang, Yuke Zhu, Silvio Savarese, Li FeiFei code -1
Twin Auxilary Classifiers GAN Mingming Gong, Yanwu Xu, Chunyuan Li, Kun Zhang, Kayhan Batmanghelich code -1
Conditional Structure Generation through Graph Variational Generative Adversarial Nets Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, Pan Li code -1
Distributional Policy Optimization: An Alternative Approach for Continuous Control Chen Tessler, Guy Tennenholtz, Shie Mannor code -1
Sampling Sketches for Concave Sublinear Functions of Frequencies Edith Cohen, Ofir Geri code -1
Deliberative Explanations: visualizing network insecurities Pei Wang, Nuno Vasconcelos code -1
Computing Full Conformal Prediction Set with Approximate Homotopy Eugène Ndiaye, Ichiro Takeuchi code -1
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift Stephan Rabanser, Stephan Günnemann, Zachary C. Lipton code -1
Hierarchical Reinforcement Learning with Advantage-Based Auxiliary Rewards Siyuan Li, Rui Wang, Minxue Tang, Chongjie Zhang code -1
Multi-View Reinforcement Learning Minne Li, Lisheng Wu, Jun Wang, Haitham BouAmmar code -1
Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution Thang Vu, Hyunjun Jang, Trung X. Pham, Chang Dong Yoo code -1
Neural Diffusion Distance for Image Segmentation Jian Sun, Zongben Xu code -1
Fine-grained Optimization of Deep Neural Networks Mete Ozay code -1
Extending Stein's unbiased risk estimator to train deep denoisers with correlated pairs of noisy images Magauiya Zhussip, Shakarim Soltanayev, Se Young Chun code -1
Fixing Implicit Derivatives: Trust-Region Based Learning of Continuous Energy Functions Chris Russell, Matteo Toso, Neill D. F. Campbell code -1
Hyperspherical Prototype Networks Pascal Mettes, Elise van der Pol, Cees Snoek code -1
Expressive power of tensor-network factorizations for probabilistic modeling Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert, J. Ignacio Cirac code -1
HyperGCN: A New Method For Training Graph Convolutional Networks on Hypergraphs Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, Partha P. Talukdar code -1
SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points Zhize Li code -1
Efficient Meta Learning via Minibatch Proximal Update Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan, Jiashi Feng code -1
Unconstrained Monotonic Neural Networks Antoine Wehenkel, Gilles Louppe code -1
Guided Similarity Separation for Image Retrieval Chundi Liu, Guang Wei Yu, Maksims Volkovs, Cheng Chang, Himanshu Rai, Junwei Ma, Satya Krishna Gorti code -1
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, Tengyu Ma code -1
Strategizing against No-regret Learners Yuan Deng, Jon Schneider, Balasubramanian Sivan code -1
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen code -1
Hierarchical Optimal Transport for Document Representation Mikhail Yurochkin, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, Justin M. Solomon code -1
Multivariate Sparse Coding of Nonstationary Covariances with Gaussian Processes Rui Li code -1
Positional Normalization Boyi Li, Felix Wu, Kilian Q. Weinberger, Serge J. Belongie code -1
A New Defense Against Adversarial Images: Turning a Weakness into a Strength Shengyuan Hu, Tao Yu, Chuan Guo, WeiLun Chao, Kilian Q. Weinberger code -1
Quadratic Video Interpolation Xiangyu Xu, Li SiYao, Wenxiu Sun, Qian Yin, MingHsuan Yang code -1
ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies Bao Wang, Zuoqiang Shi, Stanley J. Osher code -1
Incremental Scene Synthesis Benjamin Planche, Xuejian Rong, Ziyan Wu, Srikrishna Karanam, Harald Kosch, Yingli Tian, Jan Ernst, Andreas Hutter code -1
Self-Supervised Generalisation with Meta Auxiliary Learning Shikun Liu, Andrew J. Davison, Edward Johns code -1
Variational Denoising Network: Toward Blind Noise Modeling and Removal Zongsheng Yue, Hongwei Yong, Qian Zhao, Deyu Meng, Lei Zhang code -1
Fast Sparse Group Lasso Yasutoshi Ida, Yasuhiro Fujiwara, Hisashi Kashima code -1
Learnable Tree Filter for Structure-preserving Feature Transform Lin Song, Yanwei Li, Zeming Li, Gang Yu, Hongbin Sun, Jian Sun, Nanning Zheng code -1
Data-Dependence of Plateau Phenomenon in Learning with Neural Network - Statistical Mechanical Analysis Yuki Yoshida, Masato Okada code -1
Coordinated hippocampal-entorhinal replay as structural inference Talfan Evans, Neil Burgess code -1
Cascaded Dilated Dense Network with Two-step Data Consistency for MRI Reconstruction Hao Zheng, Faming Fang, Guixu Zhang code -1
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning Aaron Defazio, Léon Bottou code -1
On the Curved Geometry of Accelerated Optimization Aaron Defazio code -1
Multi-marginal Wasserstein GAN Jiezhang Cao, Langyuan Mo, Yifan Zhang, Kui Jia, Chunhua Shen, Mingkui Tan code -1
Better Exploration with Optimistic Actor Critic Kamil Ciosek, Quan Vuong, Robert Loftin, Katja Hofmann code -1
Importance Resampling for Off-policy Prediction Matthew Schlegel, Wesley Chung, Daniel Graves, Jian Qian, Martha White code -1
The Label Complexity of Active Learning from Observational Data Songbai Yan, Kamalika Chaudhuri, Tara Javidi code -1
Meta-Learning Representations for Continual Learning Khurram Javed, Martha White code -1
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training Haichao Zhang, Jianyu Wang code -1
Visualizing the PHATE of Neural Networks Scott Gigante, Adam S. Charles, Smita Krishnaswamy, Gal Mishne code -1
The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers Alex X. Lu, Amy X. Lu, Wiebke Schormann, Marzyeh Ghassemi, David W. Andrews, Alan M. Moses code -1
Nonconvex Low-Rank Tensor Completion from Noisy Data Changxiao Cai, Gen Li, H. Vincent Poor, Yuxin Chen code -1
Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization Gautam Goel, Yiheng Lin, Haoyuan Sun, Adam Wierman code -1
Channel Gating Neural Networks Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, G. Edward Suh code -1
Neural networks grown and self-organized by noise Guruprasad Raghavan, Matt Thomson code -1
Catastrophic Forgetting Meets Negative Transfer: Batch Spectral Shrinkage for Safe Transfer Learning Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, Jianmin Wang code -1
Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng code -1
Variational Structured Semantic Inference for Diverse Image Captioning Fuhai Chen, Rongrong Ji, Jiayi Ji, Xiaoshuai Sun, Baochang Zhang, Xuri Ge, Yongjian Wu, Feiyue Huang, Yan Wang code -1
Mapping State Space using Landmarks for Universal Goal Reaching Zhiao Huang, Fangchen Liu, Hao Su code -1
Transferable Normalization: Towards Improving Transferability of Deep Neural Networks Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, Michael I. Jordan code -1
Random deep neural networks are biased towards simple functions Giacomo De Palma, Bobak Toussi Kiani, Seth Lloyd code -1
XNAS: Neural Architecture Search with Expert Advice Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong Jin, Lihi ZelnikManor code -1
CNN2: Viewpoint Generalization via a Binocular Vision WeiDa Chen, ShanHung Wu code -1
Generalized Off-Policy Actor-Critic Shangtong Zhang, Wendelin Boehmer, Shimon Whiteson code -1
DAC: The Double Actor-Critic Architecture for Learning Options Shangtong Zhang, Shimon Whiteson code -1
Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models Tao Yu, Christopher De Sa code -1
Controlling Neural Level Sets Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, Yaron Lipman code -1
Blended Matching Pursuit Cyrille W. Combettes, Sebastian Pokutta code -1
An Improved Analysis of Training Over-parameterized Deep Neural Networks Difan Zou, Quanquan Gu code -1
Controllable Text-to-Image Generation Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, Philip H. S. Torr code -1
Improving Textual Network Learning with Variational Homophilic Embeddings Wenlin Wang, Chenyang Tao, Zhe Gan, Guoyin Wang, Liqun Chen, Xinyuan Zhang, Ruiyi Zhang, Qian Yang, Ricardo Henao, Lawrence Carin code -1
Rethinking Generative Mode Coverage: A Pointwise Guaranteed Approach Peilin Zhong, Yuchen Mo, Chang Xiao, Pengyu Chen, Changxi Zheng code -1
The Randomized Midpoint Method for Log-Concave Sampling Ruoqi Shen, Yin Tat Lee code -1
Sample-Efficient Deep Reinforcement Learning via Episodic Backward Update Su Young Lee, SungIk Choi, SaeYoung Chung code -1
Fully Neural Network based Model for General Temporal Point Processes Takahiro Omi, Naonori Ueda, Kazuyuki Aihara code -1
Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, Ping Wang code -1
Discrimination in Online Markets: Effects of Social Bias on Learning from Reviews and Policy Design Faidra Georgia Monachou, Itai Ashlagi code -1
Provably Powerful Graph Networks Haggai Maron, Heli BenHamu, Hadar Serviansky, Yaron Lipman code -1
Order Optimal One-Shot Distributed Learning Arsalan SharifNassab, Saber Salehkaleybar, S. Jamaloddin Golestani code -1
Information Competing Process for Learning Diversified Representations Jie Hu, Rongrong Ji, Shengchuan Zhang, Xiaoshuai Sun, Qixiang Ye, ChiaWen Lin, Qi Tian code -1
GENO - GENeric Optimization for Classical Machine Learning Sören Laue, Matthias Mitterreiter, Joachim Giesen code -1
Conditional Independence Testing using Generative Adversarial Networks Alexis Bellot, Mihaela van der Schaar code -1
Online Stochastic Shortest Path with Bandit Feedback and Unknown Transition Function Aviv Rosenberg, Yishay Mansour code -1
Partitioning Structure Learning for Segmented Linear Regression Trees Xiangyu Zheng, Song Xi Chen code -1
A Tensorized Transformer for Language Modeling Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, Dawei Song code -1
Kernel Stein Tests for Multiple Model Comparison Jen Ning Lim, Makoto Yamada, Bernhard Schölkopf, Wittawat Jitkrittum code -1
Disentangled behavioural representations Amir Dezfouli, Hassan Ashtiani, Omar Ghattas, Richard Nock, Peter Dayan, Cheng Soon Ong code -1
More Is Less: Learning Efficient Video Representations by Big-Little Network and Depthwise Temporal Aggregation Quanfu Fan, ChunFu (Richard) Chen, Hilde Kuehne, Marco Pistoia, David D. Cox code -1
Rethinking the CSC Model for Natural Images Dror Simon, Michael Elad code -1
Integrating Bayesian and Discriminative Sparse Kernel Machines for Multi-class Active Learning Weishi Shi, Qi Yu code -1
Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, Alexei A. Efros code -1
Perceiving the arrow of time in autoregressive motion Kristof Meding, Dominik Janzing, Bernhard Schölkopf, Felix A. Wichmann code -1
DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections Ofir Nachum, Yinlam Chow, Bo Dai, Lihong Li code -1
Hyper-Graph-Network Decoders for Block Codes Eliya Nachmani, Lior Wolf code -1
Large Scale Markov Decision Processes with Changing Rewards Adrian Rivera Cardoso, He Wang, Huan Xu code -1
Multiview Aggregation for Learning Category-Specific Shape Reconstruction Srinath Sridhar, Davis Rempe, Julien Valentin, Sofien Bouaziz, Leonidas J. Guibas code -1
Semi-Parametric Dynamic Contextual Pricing Virag Shah, Ramesh Johari, Jose H. Blanchet code -1
Interlaced Greedy Algorithm for Maximization of Submodular Functions in Nearly Linear Time Alan Kuhnle code -1
Initialization of ReLUs for Dynamical Isometry Rebekka Burkholz, Alina Dubatovka code -1
Gradient Information for Representation and Modeling Jie Ding, A. Robert Calderbank, Vahid Tarokh code -1
SpiderBoost and Momentum: Faster Variance Reduction Algorithms Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, Vahid Tarokh code -1
Minimax Optimal Estimation of Approximate Differential Privacy on Neighboring Databases Xiyang Liu, Sewoong Oh code -1
Backprop with Approximate Activations for Memory-efficient Network Training Ayan Chakrabarti, Benjamin Moseley code -1
Training Image Estimators without Image Ground Truth Zhihao Xia, Ayan Chakrabarti code -1
Deep Structured Prediction for Facial Landmark Detection Lisha Chen, Hui Su, Qiang Ji code -1
Information-Theoretic Confidence Bounds for Reinforcement Learning Xiuyuan Lu, Benjamin Van Roy code -1
Transfer Anomaly Detection by Inferring Latent Domain Representations Atsutoshi Kumagai, Tomoharu Iwata, Yasuhiro Fujiwara code -1
Total Least Squares Regression in Input Sparsity Time Huaian Diao, Zhao Song, David P. Woodruff, Xin Yang code -1
Park: An Open Platform for Learning-Augmented Computer Systems Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang, Haonan Wang, Ryan Marcus, Ravichandra Addanki, Mehrdad Khani Shirkoohi, Songtao He, Vikram Nathan, Frank Cangialosi, Shaileshh Bojja Venkatakrishnan, WeiHung Weng, Song Han, Tim Kraska, Mohammad Alizadeh code -1
Adapting Neural Networks for the Estimation of Treatment Effects Claudia Shi, David M. Blei, Victor Veitch code -1
Learning Transferable Graph Exploration Hanjun Dai, Yujia Li, Chenglong Wang, Rishabh Singh, PoSen Huang, Pushmeet Kohli code -1
Conformal Prediction Under Covariate Shift Ryan J. Tibshirani, Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas code -1
Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation Chen Dan, Hong Wang, Hongyang Zhang, Yuchen Zhou, Pradeep Ravikumar code -1
Asymmetric Valleys: Beyond Sharp and Flat Local Minima Haowei He, Gao Huang, Yang Yuan code -1
Positive-Unlabeled Compression on the Cloud Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, Chunjing Xu, Dacheng Tao, Chang Xu code -1
Direct Estimation of Differential Functional Graphical Models Boxin Zhao, Y. Samuel Wang, Mladen Kolar code -1
On the Calibration of Multiclass Classification with Rejection Chenri Ni, Nontawat Charoenphakdee, Junya Honda, Masashi Sugiyama code -1
Third-Person Visual Imitation Learning via Decoupled Hierarchical Controller Pratyusha Sharma, Deepak Pathak, Abhinav Gupta code -1
Stagewise Training Accelerates Convergence of Testing Error Over SGD Zhuoning Yuan, Yan Yan, Rong Jin, Tianbao Yang code -1
Learning Robust Options by Conditional Value at Risk Optimization Takuya Hiraoka, Takahisa Imagawa, Tatsuya Mori, Takashi Onishi, Yoshimasa Tsuruoka code -1
Non-asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems Yi Xu, Rong Jin, Tianbao Yang code -1
On Learning Over-parameterized Neural Networks: A Functional Approximation Perspective Lili Su, Pengkun Yang code -1
Drill-down: Interactive Retrieval of Complex Scenes using Natural Language Queries Fuwen Tan, Paola CascanteBonilla, Xiaoxiao Guo, Hui Wu, Song Feng, Vicente Ordonez code -1
Dual Variational Generation for Low Shot Heterogeneous Face Recognition Chaoyou Fu, Xiang Wu, Yibo Hu, Huaibo Huang, Ran He code -1
Discovering Neural Wirings Mitchell Wortsman, Ali Farhadi, Mohammad Rastegari code -1
On the Optimality of Perturbations in Stochastic and Adversarial Multi-armed Bandit Problems Baekjin Kim, Ambuj Tewari code -1
Knowledge Extraction with No Observable Data Jaemin Yoo, Minyong Cho, Taebum Kim, U Kang code -1
PAC-Bayes under potentially heavy tails Matthew J. Holland code -1
One-Shot Object Detection with Co-Attention and Co-Excitation TingI Hsieh, YiChen Lo, HwannTzong Chen, TyngLuh Liu code -1
Quaternion Knowledge Graph Embeddings Shuai Zhang, Yi Tay, Lina Yao, Qi Liu code -1
Glyce: Glyph-vectors for Chinese Character Representations Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, Fan Yin, Muyu Li, Qinghong Han, Xiaofei Sun, Jiwei Li code -1
Turbo Autoencoder: Deep learning based channel codes for point-to-point communication channels Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, Pramod Viswanath code -1
Heterogeneous Graph Learning for Visual Commonsense Reasoning Weijiang Yu, Jingwen Zhou, Weihao Yu, Xiaodan Liang, Nong Xiao code -1
Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht code -1
Classification-by-Components: Probabilistic Modeling of Reasoning over a Set of Components Sascha Saralajew, Lars Holdijk, Maike Rees, Ebubekir Asan, Thomas Villmann code -1
Identifying Causal Effects via Context-specific Independence Relations Santtu Tikka, Antti Hyttinen, Juha Karvanen code -1
Bridging Machine Learning and Logical Reasoning by Abductive Learning WangZhou Dai, QiuLing Xu, Yang Yu, ZhiHua Zhou code -1
Regret Minimization for Reinforcement Learning by Evaluating the Optimal Bias Function Zihan Zhang, Xiangyang Ji code -1
On the Global Convergence of (Fast) Incremental Expectation Maximization Methods Belhal Karimi, HoiTo Wai, Eric Moulines, Marc Lavielle code -1
A Linearly Convergent Proximal Gradient Algorithm for Decentralized Optimization Sulaiman A. Alghunaim, Kun Yuan, Ali H. Sayed code -1
Regularizing Trajectory Optimization with Denoising Autoencoders Rinu Boney, Norman Di Palo, Mathias Berglund, Alexander Ilin, Juho Kannala, Antti Rasmus, Harri Valpola code -1
Learning Hierarchical Priors in VAEs Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke, Patrick van der Smagt code -1
Epsilon-Best-Arm Identification in Pay-Per-Reward Multi-Armed Bandits Sivan Sabato code -1
Safe Exploration for Interactive Machine Learning Matteo Turchetta, Felix Berkenkamp, Andreas Krause code -1
Addressing Failure Prediction by Learning Model Confidence Charles Corbière, Nicolas Thome, Avner BarHen, Matthieu Cord, Patrick Pérez code -1
Combinatorial Bayesian Optimization using the Graph Cartesian Product ChangYong Oh, Jakub M. Tomczak, Efstratios Gavves, Max Welling code -1
Fooling Neural Network Interpretations via Adversarial Model Manipulation Juyeon Heo, Sunghwan Joo, Taesup Moon code -1
On Lazy Training in Differentiable Programming Lénaïc Chizat, Edouard Oyallon, Francis R. Bach code -1
Quality Aware Generative Adversarial Networks Parimala Kancharla, Sumohana S. Channappayya code -1
Copula-like Variational Inference Marcel Hirt, Petros Dellaportas, Alain Durmus code -1
Implicit Regularization for Optimal Sparse Recovery Tomas Vaskevicius, Varun Kanade, Patrick Rebeschini code -1
Locally Private Gaussian Estimation Matthew Joseph, Janardhan Kulkarni, Jieming Mao, Zhiwei Steven Wu code -1
Multi-mapping Image-to-Image Translation via Learning Disentanglement Xiaoming Yu, Yuanqi Chen, Shan Liu, Thomas H. Li, Ge Li code -1
Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs Yusuke Tanaka, Toshiyuki Tanaka, Tomoharu Iwata, Takeshi Kurashima, Maya Okawa, Yasunori Akagi, Hiroyuki Toda code -1
Fast Structured Decoding for Sequence Models Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, ZhiHong Deng code -1
Learning Temporal Pose Estimation from Sparsely-Labeled Videos Gedas Bertasius, Christoph Feichtenhofer, Du Tran, Jianbo Shi, Lorenzo Torresani code -1
Putting An End to End-to-End: Gradient-Isolated Learning of Representations Sindy Löwe, Peter O'Connor, Bastiaan S. Veeling code -1
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching Hongteng Xu, Dixin Luo, Lawrence Carin code -1
Meta-Reinforced Synthetic Data for One-Shot Fine-Grained Visual Recognition Satoshi Tsutsui, Yanwei Fu, David J. Crandall code -1
Real-Time Reinforcement Learning Simon Ramstedt, Chris Pal code -1
Robust Multi-agent Counterfactual Prediction Alexander Peysakhovich, Christian Kroer, Adam Lerer code -1
Approximate Inference Turns Deep Networks into Gaussian Processes Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, Maciej Korzepa code -1
Deep Signature Transforms Patrick Kidger, Patric Bonnier, Imanol Pérez Arribas, Cristopher Salvi, Terry J. Lyons code -1
Individual Regret in Cooperative Nonstochastic Multi-Armed Bandits Yogev BarOn, Yishay Mansour code -1
Convergent Policy Optimization for Safe Reinforcement Learning Ming Yu, Zhuoran Yang, Mladen Kolar, Zhaoran Wang code -1
Augmented Neural ODEs Emilien Dupont, Arnaud Doucet, Yee Whye Teh code -1
Thompson Sampling for Multinomial Logit Contextual Bandits Minhwan Oh, Garud Iyengar code -1
Backpropagation-Friendly Eigendecomposition Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, Mathieu Salzmann code -1
FastSpeech: Fast, Robust and Controllable Text to Speech Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, TieYan Liu code -1
Ultrametric Fitting by Gradient Descent Giovanni Chierchia, Benjamin Perret code -1
Distinguishing Distributions When Samples Are Strategically Transformed Hanrui Zhang, Yu Cheng, Vincent Conitzer code -1
Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks Gauthier Gidel, Francis R. Bach, Simon LacosteJulien code -1
Deep Set Prediction Networks Yan Zhang, Jonathon S. Hare, Adam PrügelBennett code -1
DppNet: Approximating Determinantal Point Processes with Deep Networks Zelda E. Mariet, Yaniv Ovadia, Jasper Snoek code -1
Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control Sai Qian Zhang, Qi Zhang, Jieyu Lin code -1
Neural Lyapunov Control YaChien Chang, Nima Roohi, Sicun Gao code -1
Fully Dynamic Consistent Facility Location Vincent CohenAddad, Niklas Hjuler, Nikos Parotsidis, David Saulpic, Chris Schwiegelshohn code -1
SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, Samuel R. Bowman code -1
A Flexible Generative Framework for Graph-based Semi-supervised Learning Jiaqi Ma, Weijing Tang, Ji Zhu, Qiaozhu Mei code -1
Inherent Weight Normalization in Stochastic Neural Networks Georgios Detorakis, Sourav Dutta, Abhishek Khanna, Matthew Jerry, Suman Datta, Emre Neftci code -1
Optimal Decision Tree with Noisy Outcomes Su Jia, Viswanath Nagarajan, Fatemeh Navidi, R. Ravi code -1
Meta-Curvature Eunbyung Park, Junier B. Oliva code -1
Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for Reinforcement Learning Nathan Kallus, Masatoshi Uehara code -1
KerGM: Kernelized Graph Matching Zhen Zhang, Yijian Xiang, Lingfei Wu, Bing Xue, Arye Nehorai code -1
Transfusion: Understanding Transfer Learning for Medical Imaging Maithra Raghu, Chiyuan Zhang, Jon M. Kleinberg, Samy Bengio code -1
Adversarial training for free! Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John P. Dickerson, Christoph Studer, Larry S. Davis, Gavin Taylor, Tom Goldstein code -1
Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients Jun Sun, Tianyi Chen, Georgios B. Giannakis, Zaiyue Yang code -1
Implicitly learning to reason in first-order logic Vaishak Belle, Brendan Juba code -1
Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods Kevin J. Liang, Guoyin Wang, Yitong Li, Ricardo Henao, Lawrence Carin code -1
PC-Fairness: A Unified Framework for Measuring Causality-based Fairness Yongkai Wu, Lu Zhang, Xintao Wu, Hanghang Tong code -1
Arbicon-Net: Arbitrary Continuous Geometric Transformation Networks for Image Registration Jianchun Chen, Lingjing Wang, Xiang Li, Yi Fang code -1
Assessing Disparate Impact of Personalized Interventions: Identifiability and Bounds Nathan Kallus, Angela Zhou code -1
The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the XAUC Metric Nathan Kallus, Angela Zhou code -1
HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models Sharon Zhou, Mitchell L. Gordon, Ranjay Krishna, Austin Narcomey, Li FeiFei, Michael S. Bernstein code -1
First order expansion of convex regularized estimators Pierre C. Bellec, Arun K. Kuchibhotla code -1
Capacity Bounded Differential Privacy Kamalika Chaudhuri, Jacob Imola, Ashwin Machanavajjhala code -1
Universal Boosting Variational Inference Trevor Campbell, Xinglong Li code -1
SGD on Neural Networks Learns Functions of Increasing Complexity Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin L. Edelman, Tristan Yang, Boaz Barak, Haofeng Zhang code -1
The Landscape of Non-convex Empirical Risk with Degenerate Population Risk Shuang Li, Gongguo Tang, Michael B. Wakin code -1
Making AI Forget You: Data Deletion in Machine Learning Antonio Ginart, Melody Y. Guan, Gregory Valiant, James Zou code -1
Practical Differentially Private Top-k Selection with Pay-what-you-get Composition David Durfee, Ryan M. Rogers code -1
Conformalized Quantile Regression Yaniv Romano, Evan Patterson, Emmanuel J. Candès code -1
Thompson Sampling with Information Relaxation Penalties Seungki Min, Costis Maglaras, Ciamac C. Moallemi code -1
Deep Generalized Method of Moments for Instrumental Variable Analysis Andrew Bennett, Nathan Kallus, Tobias Schnabel code -1
Learning Sample-Specific Models with Low-Rank Personalized Regression Benjamin J. Lengerich, Bryon Aragam, Eric P. Xing code -1
Dancing to Music HsinYing Lee, Xiaodong Yang, MingYu Liu, TingChun Wang, YuDing Lu, MingHsuan Yang, Jan Kautz code -1
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask Hattie Zhou, Janice Lan, Rosanne Liu, Jason Yosinski code -1
Implicit Generation and Modeling with Energy Based Models Yilun Du, Igor Mordatch code -1
LCA: Loss Change Allocation for Neural Network Training Janice Lan, Rosanne Liu, Hattie Zhou, Jason Yosinski code -1
Predicting the Politics of an Image Using Webly Supervised Data Christopher Thomas, Adriana Kovashka code -1
Adaptive GNN for Image Analysis and Editing Lingyu Liang, Lianwen Jin, Yong Xu code -1
Ultra Fast Medoid Identification via Correlated Sequential Halving Tavor Z. Baharav, David Tse code -1
Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD Phuong Ha Nguyen, Lam M. Nguyen, Marten van Dijk code -1
Asymptotics for Sketching in Least Squares Regression Edgar Dobriban, Sifan Liu code -1
MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, Sergey Levine code -1
Exact inference in structured prediction Kevin Bello, Jean Honorio code -1
Coda: An End-to-End Neural Program Decompiler Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Farinaz Koushanfar, Jishen Zhao code -1
Bat-G net: Bat-inspired High-Resolution 3D Image Reconstruction using Ultrasonic Echoes Gunpil Hwang, Seohyeon Kim, HyeonMin Bae code -1
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates Sharan Vaswani, Aaron Mishkin, Issam H. Laradji, Mark Schmidt, Gauthier Gidel, Simon LacosteJulien code -1
Scalable Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data Dominik Linzner, Michael Schmidt, Heinz Koeppl code -1
Privacy-Preserving Classification of Personal Text Messages with Secure Multi-Party Computation Devin Reich, Ariel Todoki, Rafael Dowsley, Martine De Cock, Anderson C. A. Nascimento code -1
Efficiently Estimating Erdos-Renyi Graphs with Node Differential Privacy Jonathan R. Ullman, Adam Sealfon code -1
Learning Representations for Time Series Clustering Qianli Ma, Jiawei Zheng, Sen Li, Gary W. Cottrell code -1
Verified Uncertainty Calibration Ananya Kumar, Percy Liang, Tengyu Ma code -1
A Normative Theory for Causal Inference and Bayes Factor Computation in Neural Circuits Wenhao Zhang, Si Wu, Brent Doiron, Tai Sing Lee code -1
Unsupervised Keypoint Learning for Guiding Class-Conditional Video Prediction Yunji Kim, Seonghyeon Nam, In Cho, Seon Joo Kim code -1
Subspace Attack: Exploiting Promising Subspaces for Query-Efficient Black-box Attacks Yiwen Guo, Ziang Yan, Changshui Zhang code -1
Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction Difan Zou, Pan Xu, Quanquan Gu code -1
Learning Latent Process from High-Dimensional Event Sequences via Efficient Sampling Qitian Wu, Zixuan Zhang, Xiaofeng Gao, Junchi Yan, Guihai Chen code -1
Cross-sectional Learning of Extremal Dependence among Financial Assets Xing Yan, Qi Wu, Wen Zhang code -1
Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG Yujia Jin, Aaron Sidford code -1
Compression with Flows via Local Bits-Back Coding Jonathan Ho, Evan Lohn, Pieter Abbeel code -1
Exact Rate-Distortion in Autoencoders via Echo Noise Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg code -1
iSplit LBI: Individualized Partial Ranking with Ties via Split LBI Qianqian Xu, Xinwei Sun, Zhiyong Yang, Xiaochun Cao, Qingming Huang, Yuan Yao code -1
Domes to Drones: Self-Supervised Active Triangulation for 3D Human Pose Reconstruction Aleksis Pirinen, Erik Gärtner, Cristian Sminchisescu code -1
MetaQuant: Learning to Quantize by Learning to Penetrate Non-differentiable Quantization Shangyu Chen, Wenya Wang, Sinno Jialin Pan code -1
Improved Precision and Recall Metric for Assessing Generative Models Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, Timo Aila code -1
A First-Order Algorithmic Framework for Distributionally Robust Logistic Regression Jiajin Li, Sen Huang, Anthony ManCho So code -1
PasteGAN: A Semi-Parametric Method to Generate Image from Scene Graph Yikang Li, Tao Ma, Yeqi Bai, Nan Duan, Sining Wei, Xiaogang Wang code -1
Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso Quentin Bertrand, Mathurin Massias, Alexandre Gramfort, Joseph Salmon code -1
Joint Optimization of Tree-based Index and Deep Model for Recommender Systems Han Zhu, Daqing Chang, Ziru Xu, Pengye Zhang, Xiang Li, Jie He, Han Li, Jian Xu, Kun Gai code -1
Learning Generalizable Device Placement Algorithms for Distributed Machine Learning Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, Mohammad Alizadeh code -1
Uncoupled Regression from Pairwise Comparison Data Liyuan Xu, Junya Honda, Gang Niu, Masashi Sugiyama code -1
Cross Attention Network for Few-shot Classification Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, Xilin Chen code -1
A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution Qing Qu, Xiao Li, Zhihui Zhu code -1
SCAN: A Scalable Neural Networks Framework Towards Compact and Efficient Models Linfeng Zhang, Zhanhong Tan, Jiebo Song, Jingwei Chen, Chenglong Bao, Kaisheng Ma code -1
Revisiting the Bethe-Hessian: Improved Community Detection in Sparse Heterogeneous Graphs Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay code -1
Teaching Multiple Concepts to a Forgetful Learner Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla code -1
Regularized Weighted Low Rank Approximation Frank Ban, David P. Woodruff, Qiuyi (Richard) Zhang code -1
Practical and Consistent Estimation of f-Divergences Paul K. Rubenstein, Olivier Bousquet, Josip Djolonga, Carlos Riquelme, Ilya O. Tolstikhin code -1
Approximation Ratios of Graph Neural Networks for Combinatorial Problems Ryoma Sato, Makoto Yamada, Hisashi Kashima code -1
Thinning for Accelerating the Learning of Point Processes Tianbo Li, Yiping Ke code -1
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models Maksim Kuznetsov, Daniil Polykovskiy, Dmitry P. Vetrov, Alexander Zhebrak code -1
Differentially Private Markov Chain Monte Carlo Mikko A. Heikkilä, Joonas Jälkö, Onur Dikmen, Antti Honkela code -1
Full-Gradient Representation for Neural Network Visualization Suraj Srinivas, François Fleuret code -1
q-means: A quantum algorithm for unsupervised machine learning Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, Anupam Prakash code -1
Learner-aware Teaching: Inverse Reinforcement Learning with Preferences and Constraints Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, Adish Singla code -1
Limitations of the empirical Fisher approximation for natural gradient descent Frederik Kunstner, Philipp Hennig, Lukas Balles code -1
Flow-based Image-to-Image Translation with Feature Disentanglement Ruho Kondo, Keisuke Kawano, Satoshi Koide, Takuro Kutsuna code -1
Learning dynamic polynomial proofs Alhussein Fawzi, Mateusz Malinowski, Hamza Fawzi, Omar Fawzi code -1
Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models Vincent Le Guen, Nicolas Thome code -1
Understanding Attention and Generalization in Graph Neural Networks Boris Knyazev, Graham W. Taylor, Mohamed R. Amer code -1
Data Cleansing for Models Trained with SGD Satoshi Hara, Atsushi Nitanda, Takanori Maehara code -1
Curvilinear Distance Metric Learning Shuo Chen, Lei Luo, Jian Yang, Chen Gong, Jun Li, Heng Huang code -1
Embedding Symbolic Knowledge into Deep Networks Yaqi Xie, Ziwei Xu, Kuldeep S. Meel, Mohan S. Kankanhalli, Harold Soh code -1
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections Raanan Y. Yehezkel Rohekar, Yaniv Gurwicz, Shami Nisimov, Gal Novik code -1
Efficient Graph Generation with Graph Recurrent Attention Networks Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David Duvenaud, Raquel Urtasun, Richard S. Zemel code -1
Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms Mahesh Chandra Mukkamala, Peter Ochs code -1
Learning Deep Bilinear Transformation for Fine-grained Image Representation Heliang Zheng, Jianlong Fu, ZhengJun Zha, Jiebo Luo code -1
Practical Deep Learning with Bayesian Principles Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz Khan, Anirudh Jain, Runa Eschenhagen, Richard E. Turner, Rio Yokota code -1
Training Language GANs from Scratch Cyprien de Masson d'Autume, Shakir Mohamed, Mihaela Rosca, Jack W. Rae code -1
Pseudo-Extended Markov chain Monte Carlo Christopher Nemeth, Fredrik Lindsten, Maurizio Filippone, James Hensman code -1
Differentially Private Bagging: Improved utility and cheaper privacy than subsample-and-aggregate James Jordon, Jinsung Yoon, Mihaela van der Schaar code -1
Propagating Uncertainty in Reinforcement Learning via Wasserstein Barycenters Alberto Maria Metelli, Amarildo Likmeta, Marcello Restelli code -1
On Adversarial Mixup Resynthesis Christopher Beckham, Sina Honari, Vikas Verma, Alex Lamb, Farnoosh Ghadiri, R. Devon Hjelm, Yoshua Bengio, Chris Pal code -1
A Geometric Perspective on Optimal Representations for Reinforcement Learning Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taïga, Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, Clare Lyle code -1
Learning New Tricks From Old Dogs: Multi-Source Transfer Learning From Pre-Trained Networks Joshua K. Lee, Prasanna Sattigeri, Gregory W. Wornell code -1
Understanding and Improving Layer Normalization Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, Junyang Lin code -1
Uncertainty-based Continual Learning with Adaptive Regularization Hongjoon Ahn, Sungmin Cha, Donggyu Lee, Taesup Moon code -1
LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, Dacheng Tao code -1
U-Time: A Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging Mathias Perslev, Michael Hejselbak Jensen, Sune Darkner, Poul Jørgen Jennum, Christian Igel code -1
Massively scalable Sinkhorn distances via the Nyström method Jason M. Altschuler, Francis R. Bach, Alessandro Rudi, Jonathan NilesWeed code -1
Double Quantization for Communication-Efficient Distributed Optimization Yue Yu, Jiaxiang Wu, Longbo Huang code -1
Globally optimal score-based learning of directed acyclic graphs in high-dimensions Bryon Aragam, Arash A. Amini, Qing Zhou code -1
Multi-relational Poincaré Graph Embeddings Ivana Balazevic, Carl Allen, Timothy M. Hospedales code -1
No-Press Diplomacy: Modeling Multi-Agent Gameplay Philip Paquette, Yuchen Lu, Steven Bocco, Max O. Smith, Satya OrtizGagne, Jonathan K. Kummerfeld, Joelle Pineau, Satinder Singh, Aaron C. Courville code -1
State Aggregation Learning from Markov Transition Data Yaqi Duan, Zheng Tracy Ke, Mengdi Wang code -1
Disentangling Influence: Using disentangled representations to audit model predictions Charles T. Marx, Richard L. Phillips, Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian code -1
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning David Janz, Jiri Hron, Przemyslaw Mazur, Katja Hofmann, José Miguel HernándezLobato, Sebastian Tschiatschek code -1
Partially Encrypted Deep Learning using Functional Encryption Théo Ryffel, David Pointcheval, Francis R. Bach, Edouard DufourSans, Romain Gay code -1
Decentralized Cooperative Stochastic Bandits David MartínezRubio, Varun Kanade, Patrick Rebeschini code -1
Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem Gonzalo Mena, Jonathan NilesWeed code -1
Efficient Deep Approximation of GMMs Shirin Jalali, Carl J. Nuzman, Iraj Saniee code -1
Learning low-dimensional state embeddings and metastable clusters from time series data Yifan Sun, Yaqi Duan, Hao Gong, Mengdi Wang code -1
Exploiting Local and Global Structure for Point Cloud Semantic Segmentation with Contextual Point Representations Xu Wang, Jingming He, Lin Ma code -1
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes Creighton Heaukulani, Mark van der Wilk code -1
Kernel Instrumental Variable Regression Rahul Singh, Maneesh Sahani, Arthur Gretton code -1
Symmetry-Based Disentangled Representation Learning requires Interaction with Environments Hugo CasellesDupré, Michaël Garcia Ortiz, David Filliat code -1
Fast Efficient Hyperparameter Tuning for Policy Gradient Methods Supratik Paul, Vitaly Kurin, Shimon Whiteson code -1
Offline Contextual Bayesian Optimization Ian Char, Youngseog Chung, Willie Neiswanger, Kirthevasan Kandasamy, Oak Nelson, Mark D. Boyer, Egemen Kolemen code -1
Making the Cut: A Bandit-based Approach to Tiered Interviewing Candice Schumann, Zhi Lang, Jeffrey S. Foster, John P. Dickerson code -1
Unsupervised Scalable Representation Learning for Multivariate Time Series JeanYves Franceschi, Aymeric Dieuleveut, Martin Jaggi code -1
A state-space model for inferring effective connectivity of latent neural dynamics from simultaneous EEG/fMRI Tao Tu, John W. Paisley, Stefan Haufe, Paul Sajda code -1
End to end learning and optimization on graphs Bryan Wilder, Eric Ewing, Bistra Dilkina, Milind Tambe code -1
Game Design for Eliciting Distinguishable Behavior Fan Yang, Liu Leqi, Yifan Wu, Zachary Chase Lipton, Pradeep Ravikumar, Tom M. Mitchell, William W. Cohen code -1
When does label smoothing help? Rafael Müller, Simon Kornblith, Geoffrey E. Hinton code -1
Finite-Time Performance Bounds and Adaptive Learning Rate Selection for Two Time-Scale Reinforcement Learning Harsh Gupta, R. Srikant, Lei Ying code -1
Rethinking Deep Neural Network Ownership Verification: Embedding Passports to Defeat Ambiguity Attacks Lixin Fan, Kam Woh Ng, Chee Seng Chan code -1
Scalable Spike Source Localization in Extracellular Recordings using Amortized Variational Inference Cole L. Hurwitz, Kai Xu, Akash Srivastava, Alessio Paolo Buccino, Matthias H. Hennig code -1
Optimal Sketching for Kronecker Product Regression and Low Rank Approximation Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, David P. Woodruff code -1
Distribution-Independent PAC Learning of Halfspaces with Massart Noise Ilias Diakonikolas, Themis Gouleakis, Christos Tzamos code -1
The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies Ronen Basri, David W. Jacobs, Yoni Kasten, Shira Kritchman code -1
Adaptive Auxiliary Task Weighting for Reinforcement Learning Xingyu Lin, Harjatin Singh Baweja, George Kantor, David Held code -1
Blocking Bandits Soumya Basu, Rajat Sen, Sujay Sanghavi, Sanjay Shakkottai code -1
Global Convergence of Least Squares EM for Demixing Two Log-Concave Densities Wei Qian, Yuqian Zhang, Yudong Chen code -1
Prior-Free Dynamic Auctions with Low Regret Buyers Yuan Deng, Jon Schneider, Balasubramanian Sivan code -1
On Single Source Robustness in Deep Fusion Models Taewan Kim, Joydeep Ghosh code -1
Policy Evaluation with Latent Confounders via Optimal Balance Andrew Bennett, Nathan Kallus code -1
Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting Rajat Sen, HsiangFu Yu, Inderjit S. Dhillon code -1
Adaptive Cross-Modal Few-shot Learning Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro code -1
Spectral Modification of Graphs for Improved Spectral Clustering Ioannis Koutis, Huong Le code -1
Hyperbolic Graph Convolutional Neural Networks Ines Chami, Zhitao Ying, Christopher Ré, Jure Leskovec code -1
Cost Effective Active Search Shali Jiang, Roman Garnett, Benjamin Moseley code -1
Exploration Bonus for Regret Minimization in Discrete and Continuous Average Reward MDPs Jian Qian, Ronan Fruit, Matteo Pirotta, Alessandro Lazaric code -1
Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks Xiao Sun, Jungwook Choi, ChiaYu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi Srinivasan, Xiaodong Cui, Wei Zhang, Kailash Gopalakrishnan code -1
Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers GuangHe Lee, Yang Yuan, Shiyu Chang, Tommi S. Jaakkola code -1
Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees Ruqi Zhang, Christopher De Sa code -1
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers Ari S. Morcos, Haonan Yu, Michela Paganini, Yuandong Tian code -1
Breaking the Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces Chuan Guo, Ali Mousavi, Xiang Wu, Daniel Niels HoltmannRice, Satyen Kale, Sashank J. Reddi, Sanjiv Kumar code -1
Fair Algorithms for Clustering Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, Maryam Negahbani code -1
Learning Mean-Field Games Xin Guo, Anran Hu, Renyuan Xu, Junzi Zhang code -1
SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers Igor Fedorov, Ryan P. Adams, Matthew Mattina, Paul N. Whatmough code -1
Deep imitation learning for molecular inverse problems Eric Jonas code -1
Visual Concept-Metaconcept Learning Chi Han, Jiayuan Mao, Chuang Gan, Josh Tenenbaum, Jiajun Wu code -1
Few-shot Video-to-Video Synthesis TingChun Wang, MingYu Liu, Andrew Tao, Guilin Liu, Bryan Catanzaro, Jan Kautz code -1
Neural Similarity Learning Weiyang Liu, Zhen Liu, James M. Rehg, Le Song code -1
Ordered Memory Yikang Shen, Shawn Tan, Seyed Arian Hosseini, Zhouhan Lin, Alessandro Sordoni, Aaron C. Courville code -1
MixMatch: A Holistic Approach to Semi-Supervised Learning David Berthelot, Nicholas Carlini, Ian J. Goodfellow, Nicolas Papernot, Avital Oliver, Colin Raffel code -1
Multivariate Triangular Quantile Maps for Novelty Detection Jingjing Wang, Sun Sun, Yaoliang Yu code -1
Fast Parallel Algorithms for Statistical Subset Selection Problems Sharon Qian, Yaron Singer code -1
PHYRE: A New Benchmark for Physical Reasoning Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, Ross B. Girshick code -1
On the number of variables to use in principal component regression Ji Xu, Daniel J. Hsu code -1
Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery Jicong Fan, Lijun Ding, Yudong Chen, Madeleine Udell code -1
Mutually Regressive Point Processes Ifigeneia Apostolopoulou, Scott W. Linderman, Kyle Miller, Artur Dubrawski code -1
Data-driven Estimation of Sinusoid Frequencies Gautier Izacard, Sreyas Mohan, Carlos FernandezGranda code -1
E2-Train: Training State-of-the-art CNNs with Over 80% Energy Savings Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan Lin, Zhangyang Wang code -1
ANODEV2: A Coupled Neural ODE Framework Tianjun Zhang, Zhewei Yao, Amir Gholami, Joseph E. Gonzalez, Kurt Keutzer, Michael W. Mahoney, George Biros code -1
Estimating Entropy of Distributions in Constant Space Jayadev Acharya, Sourbh Bhadane, Piotr Indyk, Ziteng Sun code -1
On the Utility of Learning about Humans for Human-AI Coordination Micah Carroll, Rohin Shah, Mark K. Ho, Tom Griffiths, Sanjit A. Seshia, Pieter Abbeel, Anca D. Dragan code -1
Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium Gabriele Farina, Chun Kai Ling, Fei Fang, Tuomas Sandholm code -1
Learning in Generalized Linear Contextual Bandits with Stochastic Delays Zhengyuan Zhou, Renyuan Xu, Jose H. Blanchet code -1
Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness Saeed Mahloujifar, Xiao Zhang, Mohammad Mahmoody, David Evans code -1
Optimistic Regret Minimization for Extensive-Form Games via Dilated Distance-Generating Functions Gabriele Farina, Christian Kroer, Tuomas Sandholm code -1
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model Erik Nijkamp, Mitch Hill, SongChun Zhu, Ying Nian Wu code -1
Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, YuXiang Wang, Xifeng Yan code -1
On the Accuracy of Influence Functions for Measuring Group Effects Pang Wei Koh, KaiSiang Ang, Hubert H. K. Teo, Percy Liang code -1
Face Reconstruction from Voice using Generative Adversarial Networks Yandong Wen, Bhiksha Raj, Rita Singh code -1
Incremental Few-Shot Learning with Attention Attractor Networks Mengye Ren, Renjie Liao, Ethan Fetaya, Richard S. Zemel code -1
On Testing for Biases in Peer Review Ivan Stelmakh, Nihar B. Shah, Aarti Singh code -1
Learning Disentangled Representation for Robust Person Re-identification Chanho Eom, Bumsub Ham code -1
Balancing Efficiency and Fairness in On-Demand Ridesourcing Nixie S. Lesmana, Xuan Zhang, Xiaohui Bei code -1
Latent Ordinary Differential Equations for Irregularly-Sampled Time Series Yulia Rubanova, Tian Qi Chen, David Duvenaud code -1
Deep RGB-D Canonical Correlation Analysis For Sparse Depth Completion Yiqi Zhong, ChoYing Wu, Suya You, Ulrich Neumann code -1
Input Similarity from the Neural Network Perspective Guillaume Charpiat, Nicolas Girard, Loris Felardos, Yuliya Tarabalka code -1
Adaptive Sequence Submodularity Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi code -1
Weight Agnostic Neural Networks Adam Gaier, David Ha code -1
Learning to Predict Without Looking Ahead: World Models Without Forward Prediction C. Daniel Freeman, David Ha, Luke Metz code -1
Reducing the variance in online optimization by transporting past gradients Sébastien M. R. Arnold, PierreAntoine Manzagol, Reza Babanezhad, Ioannis Mitliagkas, Nicolas Le Roux code -1
Characterizing Bias in Classifiers using Generative Models Daniel McDuff, Shuang Ma, Yale Song, Ashish Kapoor code -1
Optimal Stochastic and Online Learning with Individual Iterates Yunwen Lei, Peng Yang, Ke Tang, DingXuan Zhou code -1
Policy Learning for Fairness in Ranking Ashudeep Singh, Thorsten Joachims code -1
Off-Policy Evaluation via Off-Policy Classification Alexander Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian Ibarz, Sergey Levine code -1
Regularized Gradient Boosting Corinna Cortes, Mehryar Mohri, Dmitry Storcheus code -1
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model Atilim Gunes Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Saeid Naderiparizi, Andreas Munk, Jialin Liu, Bradley GramHansen, Gilles Louppe, Lawrence Meadows, Philip H. S. Torr, Victor W. Lee, Kyle Cranmer, Prabhat, Frank Wood code -1
Markov Random Fields for Collaborative Filtering Harald Steck code -1
A Step Toward Quantifying Independently Reproducible Machine Learning Research Edward Raff code -1
Scalable Global Optimization via Local Bayesian Optimization David Eriksson, Michael Pearce, Jacob R. Gardner, Ryan Turner, Matthias Poloczek code -1
Time-series Generative Adversarial Networks Jinsung Yoon, Daniel Jarrett, Mihaela van der Schaar code -1
Ouroboros: On Accelerating Training of Transformer-Based Language Models Qian Yang, Zhouyuan Huo, Wenlin Wang, Heng Huang, Lawrence Carin code -1
A Refined Margin Distribution Analysis for Forest Representation Learning ShenHuan Lyu, Liang Yang, ZhiHua Zhou code -1
Robustness to Adversarial Perturbations in Learning from Incomplete Data Amir Najafi, Shinichi Maeda, Masanori Koyama, Takeru Miyato code -1
Exploring Unexplored Tensor Network Decompositions for Convolutional Neural Networks Kohei Hayashi, Taiki Yamaguchi, Yohei Sugawara, Shinichi Maeda code -1
An Adaptive Empirical Bayesian Method for Sparse Deep Learning Wei Deng, Xiao Zhang, Faming Liang, Guang Lin code -1
Adaptive Influence Maximization with Myopic Feedback Binghui Peng, Wei Chen code -1
Focused Quantization for Sparse CNNs Yiren Zhao, Xitong Gao, Daniel Bates, Robert D. Mullins, ChengZhong Xu code -1
Quantum Embedding of Knowledge for Reasoning Dinesh Garg, Shajith Ikbal, Santosh K. Srivastava, Harit Vishwakarma, Hima P. Karanam, L. Venkata Subramaniam code -1
Optimal Best Markovian Arm Identification with Fixed Confidence Vrettos Moulos code -1
Limiting Extrapolation in Linear Approximate Value Iteration Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill code -1
Almost Horizon-Free Structure-Aware Best Policy Identification with a Generative Model Andrea Zanette, Mykel J. Kochenderfer, Emma Brunskill code -1
Invertible Convolutional Flow Mahdi Karami, Dale Schuurmans, Jascha SohlDickstein, Laurent Dinh, Daniel Duckworth code -1
A Latent Variational Framework for Stochastic Optimization Philippe Casgrain code -1
Topology-Preserving Deep Image Segmentation Xiaoling Hu, Fuxin Li, Dimitris Samaras, Chao Chen code -1
Connective Cognition Network for Directional Visual Commonsense Reasoning Aming Wu, Linchao Zhu, Yahong Han, Yi Yang code -1
Online Markov Decoding: Lower Bounds and Near-Optimal Approximation Algorithms Vikas K. Garg, Tamar Pichkhadze code -1
A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning Francisco M. Garcia, Philip S. Thomas code -1
Push-pull Feedback Implements Hierarchical Information Retrieval Efficiently Xiao Liu, Xiaolong Zou, Zilong Ji, Gengshuo Tian, Yuanyuan Mi, Tiejun Huang, K. Y. Michael Wong, Si Wu code -1
Learning Disentangled Representations for Recommendation Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, Wenwu Zhu code -1
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels Simon S. Du, Kangcheng Hou, Ruslan Salakhutdinov, Barnabás Póczos, Ruosong Wang, Keyulu Xu code -1
In-Place Zero-Space Memory Protection for CNN Hui Guan, Lin Ning, Zhen Lin, Xipeng Shen, Huiyang Zhou, SeungHwan Lim code -1
Acceleration via Symplectic Discretization of High-Resolution Differential Equations Bin Shi, Simon S. Du, Weijie J. Su, Michael I. Jordan code -1
XLNet: Generalized Autoregressive Pretraining for Language Understanding Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, Quoc V. Le code -1
Comparison Against Task Driven Artificial Neural Networks Reveals Functional Properties in Mouse Visual Cortex Jianghong Shi, Eric SheaBrown, Michael A. Buice code -1
Variance Reduced Policy Evaluation with Smooth Function Approximation HoiTo Wai, Mingyi Hong, Zhuoran Yang, Zhaoran Wang, Kexin Tang code -1
Learning GANs and Ensembles Using Discrepancy Ben Adlam, Corinna Cortes, Mehryar Mohri, Ningshan Zhang code -1
Co-Generation with GANs using AIS based HMC Tiantian Fang, Alexander G. Schwing code -1
AttentionXML: Label Tree-based Attention-Aware Deep Model for High-Performance Extreme Multi-Label Text Classification Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, Shanfeng Zhu code -1
Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs Himanshu Sahni, Toby Buckley, Pieter Abbeel, Ilya Kuzovkin code -1
Abstract Reasoning with Distracting Features Kecheng Zheng, ZhengJun Zha, Wei Wei code -1
Generalized Block-Diagonal Structure Pursuit: Learning Soft Latent Task Assignment against Negative Transfer Zhiyong Yang, Qianqian Xu, Yangbangyan Jiang, Xiaochun Cao, Qingming Huang code -1
Adversarial Training and Robustness for Multiple Perturbations Florian Tramèr, Dan Boneh code -1
Doubly-Robust Lasso Bandit GiSoo Kim, Myunghee Cho Paik code -1
DM2C: Deep Mixed-Modal Clustering Yangbangyan Jiang, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, Qingming Huang code -1
MaCow: Masked Convolutional Generative Flow Xuezhe Ma, Xiang Kong, Shanghang Zhang, Eduard H. Hovy code -1
Learning by Abstraction: The Neural State Machine Drew A. Hudson, Christopher D. Manning code -1
Adaptive Gradient-Based Meta-Learning Methods Mikhail Khodak, MariaFlorina Balcan, Ameet Talwalkar code -1
Equipping Experts/Bandits with Long-term Memory Kai Zheng, Haipeng Luo, Ilias Diakonikolas, Liwei Wang code -1
A Regularized Approach to Sparse Optimal Policy in Reinforcement Learning Wenhao Yang, Xiang Li, Zhihua Zhang code -1
Scalable inference of topic evolution via models for latent geometric structures Mikhail Yurochkin, Zhiwei Fan, Aritra Guha, Paraschos Koutris, XuanLong Nguyen code -1
Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network Siqi Wang, Yijie Zeng, Xinwang Liu, En Zhu, Jianping Yin, Chuanfu Xu, Marius Kloft code -1
Deep Active Learning with a Neural Architecture Search Yonatan Geifman, Ran ElYaniv code -1
Efficiently escaping saddle points on manifolds Chris Criscitiello, Nicolas Boumal code -1
AutoAssist: A Framework to Accelerate Training of Deep Neural Networks Jiong Zhang, HsiangFu Yu, Inderjit S. Dhillon code -1
DFNets: Spectral CNNs for Graphs with Feedback-Looped Filters Asiri Wijesinghe, Qing Wang code -1
Learning Dynamics of Attention: Human Prior for Interpretable Machine Reasoning Wonjae Kim, Yoonho Lee code -1
Comparing Unsupervised Word Translation Methods Step by Step Mareike Hartmann, Yova Kementchedjhieva, Anders Søgaard code -1
Learning from Bad Data via Generation Tianyu Guo, Chang Xu, Boxin Shi, Chao Xu, Dacheng Tao code -1
Constrained deep neural network architecture search for IoT devices accounting for hardware calibration Florian Scheidegger, Luca Benini, Costas Bekas, A. Cristiano I. Malossi code -1
Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection Yihe Dong, Samuel B. Hopkins, Jerry Li code -1
Iterative Least Trimmed Squares for Mixed Linear Regression Yanyao Shen, Sujay Sanghavi code -1
Dynamic Ensemble Modeling Approach to Nonstationary Neural Decoding in Brain-Computer Interfaces Yu Qi, Bin Liu, Yueming Wang, Gang Pan code -1
Divergence-Augmented Policy Optimization Qing Wang, Yingru Li, Jiechao Xiong, Tong Zhang code -1
Intrinsic dimension of data representations in deep neural networks Alessio Ansuini, Alessandro Laio, Jakob H. Macke, Davide Zoccolan code -1
Towards a Zero-One Law for Column Subset Selection Zhao Song, David P. Woodruff, Peilin Zhong code -1
Compositional De-Attention Networks Yi Tay, Anh Tuan Luu, Aston Zhang, Shuohang Wang, Siu Cheung Hui code -1
Dual Adversarial Semantics-Consistent Network for Generalized Zero-Shot Learning Jian Ni, Shanghang Zhang, Haiyong Xie code -1
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers Zeyuan AllenZhu, Yuanzhi Li, Yingyu Liang code -1
Mining GOLD Samples for Conditional GANs Sangwoo Mo, Chiheon Kim, Sungwoong Kim, Minsu Cho, Jinwoo Shin code -1
Deep Model Transferability from Attribution Maps Jie Song, Yixin Chen, Xinchao Wang, Chengchao Shen, Mingli Song code -1
Fully Parameterized Quantile Function for Distributional Reinforcement Learning Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, TieYan Liu code -1
Direct Optimization through arg max for Discrete Variational Auto-Encoder Guy Lorberbom, Tommi S. Jaakkola, Andreea Gane, Tamir Hazan code -1
Distributional Reward Decomposition for Reinforcement Learning Zichuan Lin, Li Zhao, Derek Yang, Tao Qin, TieYan Liu, Guangwen Yang code -1
L_DMI: A Novel Information-theoretic Loss Function for Training Deep Nets Robust to Label Noise Yilun Xu, Peng Cao, Yuqing Kong, Yizhou Wang code -1
Convergence Guarantees for Adaptive Bayesian Quadrature Methods Motonobu Kanagawa, Philipp Hennig code -1
Progressive Augmentation of GANs Dan Zhang, Anna Khoreva code -1
UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization Ali Kavis, Kfir Y. Levy, Francis R. Bach, Volkan Cevher code -1
Meta-Surrogate Benchmarking for Hyperparameter Optimization Aaron Klein, Zhenwen Dai, Frank Hutter, Neil D. Lawrence, Javier Gonzalez code -1
Learning to Perform Local Rewriting for Combinatorial Optimization Xinyun Chen, Yuandong Tian code -1
Anti-efficient encoding in emergent communication Rahma Chaabouni, Eugene Kharitonov, Emmanuel Dupoux, Marco Baroni code -1
Singleshot : a scalable Tucker tensor decomposition Abraham Traoré, Maxime Berar, Alain Rakotomamonjy code -1
Neural Machine Translation with Soft Prototype Yiren Wang, Yingce Xia, Fei Tian, Fei Gao, Tao Qin, ChengXiang Zhai, TieYan Liu code -1
Reliable training and estimation of variance networks Nicki Skafte Detlefsen, Martin Jørgensen, Søren Hauberg code -1
Copula Multi-label Learning Weiwei Liu code -1
Bayesian Learning of Sum-Product Networks Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, Zoubin Ghahramani code -1
Bayesian Batch Active Learning as Sparse Subset Approximation Robert Pinsler, Jonathan Gordon, Eric T. Nalisnick, José Miguel HernándezLobato code -1
Optimal Sparsity-Sensitive Bounds for Distributed Mean Estimation Zengfeng Huang, Ziyue Huang, Yilei Wang, Ke Yi code -1
Global Sparse Momentum SGD for Pruning Very Deep Neural Networks Xiaohan Ding, Guiguang Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, Ji Liu code -1
Variational Bayesian Decision-making for Continuous Utilities Tomasz Kusmierczyk, Joseph Sakaya, Arto Klami code -1
The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks Ryo Karakida, Shotaro Akaho, Shunichi Amari code -1
Single-Model Uncertainties for Deep Learning Natasa Tagasovska, David LopezPaz code -1
Is Deeper Better only when Shallow is Good? Eran Malach, Shai ShalevShwartz code -1
Wasserstein Weisfeiler-Lehman Graph Kernels Matteo Togninalli, M. Elisabetta Ghisu, Felipe LlinaresLópez, Bastian Rieck, Karsten M. Borgwardt code -1
Domain Generalization via Model-Agnostic Learning of Semantic Features Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, Ben Glocker code -1
Grid Saliency for Context Explanations of Semantic Segmentation Lukas Hoyer, Mauricio Munoz, Prateek Katiyar, Anna Khoreva, Volker Fischer code -1
First-order methods almost always avoid saddle points: The case of vanishing step-sizes Ioannis Panageas, Georgios Piliouras, Xiao Wang code -1
Maximum Mean Discrepancy Gradient Flow Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton code -1
Oblivious Sampling Algorithms for Private Data Analysis Sajin Sasy, Olga Ohrimenko code -1
Semi-supervisedly Co-embedding Attributed Networks Zaiqiao Meng, Shangsong Liang, Jinyuan Fang, Teng Xiao code -1
From voxels to pixels and back: Self-supervision in natural-image reconstruction from fMRI Roman Beliy, Guy Gaziv, Assaf Hoogi, Francesca Strappini, Tal Golan, Michal Irani code -1
Copulas as High-Dimensional Generative Models: Vine Copula Autoencoders Natasa Tagasovska, Damien Ackerer, Thibault Vatter code -1
Nonstochastic Multiarmed Bandits with Unrestricted Delays Tobias Sommer Thune, Nicolò CesaBianchi, Yevgeny Seldin code -1
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling Lars Maaløe, Marco Fraccaro, Valentin Liévin, Ole Winther code -1
Code Generation as a Dual Task of Code Summarization Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, Zhi Jin code -1
Diffeomorphic Temporal Alignment Nets Ron Shapira Weber, Matan Eyal, Nicki Skafte Detlefsen, Oren Shriki, Oren Freifeld code -1
Weakly Supervised Instance Segmentation using the Bounding Box Tightness Prior ChengChun Hsu, KuangJui Hsu, ChungChi Tsai, YenYu Lin, YungYu Chuang code -1
On the Power and Limitations of Random Features for Understanding Neural Networks Gilad Yehudai, Ohad Shamir code -1
Efficient Pure Exploration in Adaptive Round model Tianyuan Jin, Jieming Shi, Xiaokui Xiao, Enhong Chen code -1
Multi-objects Generation with Amortized Structural Regularization Taufik Xu, Chongxuan Li, Jun Zhu, Bo Zhang code -1
Neural Shuffle-Exchange Networks - Sequence Processing in O(n log n) Time Karlis Freivalds, Emils Ozolins, Agris Sostaks code -1
DetNAS: Backbone Search for Object Detection Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Xinyu Xiao, Jian Sun code -1
Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates Adil Salim, Dmitry Kovalev, Peter Richtárik code -1
Fast AutoAugment Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, Sungwoong Kim code -1
On the Convergence Rate of Training Recurrent Neural Networks Zeyuan AllenZhu, Yuanzhi Li, Zhao Song code -1
Interval timing in deep reinforcement learning agents Ben Deverett, Ryan Faulkner, Meire Fortunato, Gregory Wayne, Joel Z. Leibo code -1
Graph-based Discriminators: Sample Complexity and Expressiveness Roi Livni, Yishay Mansour code -1
Large Scale Structure of Neural Network Loss Landscapes Stanislav Fort, Stanislaw Jastrzebski code -1
Learning Nonsymmetric Determinantal Point Processes Mike Gartrell, VictorEmmanuel Brunel, Elvis Dohmatob, Syrine Krichene code -1
Hypothesis Set Stability and Generalization Dylan J. Foster, Spencer Greenberg, Satyen Kale, Haipeng Luo, Mehryar Mohri, Karthik Sridharan code -1
Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni code -1
Precision-Recall Balanced Topic Modelling Seppo Virtanen, Mark A. Girolami code -1
Learning Sparse Distributions using Iterative Hard Thresholding Jacky Y. Zhang, Rajiv Khanna, Anastasios Kyrillidis, Oluwasanmi Koyejo code -1
Discriminative Topic Modeling with Logistic LDA Iryna Korshunova, Hanchen Xiong, Mateusz Fedoryszak, Lucas Theis code -1
Quantum Wasserstein Generative Adversarial Networks Shouvanik Chakrabarti, Yiming Huang, Tongyang Li, Soheil Feizi, Xiaodi Wu code -1
Blow: a single-scale hyperconditioned flow for non-parallel raw-audio voice conversion Joan Serrà, Santiago Pascual, Carlos Segura code -1
Hyperparameter Learning via Distributional Transfer Ho Chung Leon Law, Peilin Zhao, Leung Sing Chan, Junzhou Huang, Dino Sejdinovic code -1
Discriminator optimal transport Akinori Tanaka code -1
High-dimensional multivariate forecasting with low-rank Gaussian Copula Processes David Salinas, Michael BohlkeSchneider, Laurent Callot, Roberto Medico, Jan Gasthaus code -1
Are Anchor Points Really Indispensable in Label-Noise Learning? Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, Masashi Sugiyama code -1
Aligning Visual Regions and Textual Concepts for Semantic-Grounded Image Representations Fenglin Liu, Yuanxin Liu, Xuancheng Ren, Xiaodong He, Xu Sun code -1
Differentiable Ranking and Sorting using Optimal Transport Marco Cuturi, Olivier Teboul, JeanPhilippe Vert code -1
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks Gaël Letarte, Pascal Germain, Benjamin Guedj, François Laviolette code -1
Likelihood-Free Overcomplete ICA and Applications In Causal Discovery Chenwei Ding, Mingming Gong, Kun Zhang, Dacheng Tao code -1
Interior-Point Methods Strike Back: Solving the Wasserstein Barycenter Problem Dongdong Ge, Haoyue Wang, Zikai Xiong, Yinyu Ye code -1
Beyond Vector Spaces: Compact Data Representation as Differentiable Weighted Graphs Denis Mazur, Vage Egiazarian, Stanislav Morozov, Artem Babenko code -1
Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections Boris Muzellec, Marco Cuturi code -1
Efficient Smooth Non-Convex Stochastic Compositional Optimization via Stochastic Recursive Gradient Descent Huizhuo Yuan, Xiangru Lian, Chris Junchi Li, Ji Liu, Wenqing Hu code -1
On the convergence of single-call stochastic extra-gradient methods YuGuan Hsieh, Franck Iutzeler, Jérôme Malick, Panayotis Mertikopoulos code -1
Infra-slow brain dynamics as a marker for cognitive function and decline Shagun Ajmera, Shreya Rajagopal, Razi Rehman, Devarajan Sridharan code -1
Robust Principal Component Analysis with Adaptive Neighbors Rui Zhang, Hanghang Tong code -1
High-Quality Self-Supervised Deep Image Denoising Samuli Laine, Tero Karras, Jaakko Lehtinen, Timo Aila code -1
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup Sebastian Goldt, Madhu Advani, Andrew M. Saxe, Florent Krzakala, Lenka Zdeborová code -1
GIFT: Learning Transformation-Invariant Dense Visual Descriptors via Group CNNs Yuan Liu, Zehong Shen, Zhixuan Lin, Sida Peng, Hujun Bao, Xiaowei Zhou code -1
Online Prediction of Switching Graph Labelings with Cluster Specialists Mark Herbster, James Robinson code -1
Graph-Based Semi-Supervised Learning with Non-ignorable Non-response Fan Zhou, Tengfei Li, Haibo Zhou, Hongtu Zhu, Jieping Ye code -1
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning Andreas Kirsch, Joost van Amersfoort, Yarin Gal code -1
A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off Yaniv Blumenfeld, Dar Gilboa, Daniel Soudry code -1
Beyond Confidence Regions: Tight Bayesian Ambiguity Sets for Robust MDPs Marek Petrik, Reazul Hasan Russel code -1
Cross-lingual Language Model Pretraining Alexis Conneau, Guillaume Lample code -1
Approximate Bayesian Inference for a Mechanistic Model of Vesicle Release at a Ribbon Synapse Cornelius Schröder, Ben James, Leon Lagnado, Philipp Berens code -1
Updates of Equilibrium Prop Match Gradients of Backprop Through Time in an RNN with Static Input Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, Benjamin Scellier code -1
Universal Invariant and Equivariant Graph Neural Networks Nicolas Keriven, Gabriel Peyré code -1
Are sample means in multi-armed bandits positively or negatively biased? Jaehyeok Shin, Aaditya Ramdas, Alessandro Rinaldo code -1
On the Correctness and Sample Complexity of Inverse Reinforcement Learning Abi Komanduru, Jean Honorio code -1
VIREL: A Variational Inference Framework for Reinforcement Learning Matthew Fellows, Anuj Mahajan, Tim G. J. Rudner, Shimon Whiteson code -1
First Order Motion Model for Image Animation Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, Nicu Sebe code -1
Tensor Monte Carlo: Particle Methods for the GPU era Laurence Aitchison code -1
Unsupervised Emergence of Egocentric Spatial Structure from Sensorimotor Prediction Alban Laflaquière, Michaël Garcia Ortiz code -1
Learning from Label Proportions with Generative Adversarial Networks Jiabin Liu, Bo Wang, Zhiquan Qi, Yingjie Tian, Yong Shi code -1
Efficient and Thrifty Voting by Any Means Necessary Debmalya Mandal, Ariel D. Procaccia, Nisarg Shah, David P. Woodruff code -1
PointDAN: A Multi-Scale 3D Domain Adaption Network for Point Cloud Representation Can Qin, Haoxuan You, Lichen Wang, C.C. Jay Kuo, Yun Fu code -1
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, David D. Cox code -1
Non-Stationary Markov Decision Processes, a Worst-Case Approach using Model-Based Reinforcement Learning Erwan Lecarpentier, Emmanuel Rachelson code -1
Depth-First Proof-Number Search with Heuristic Edge Cost and Application to Chemical Synthesis Planning Akihiro Kishimoto, Beat Buesser, Bei Chen, Adi Botea code -1
Toward a Characterization of Loss Functions for Distribution Learning Nika Haghtalab, Cameron Musco, Bo Waggoner code -1
Coresets for Archetypal Analysis Sebastian Mair, Ulf Brefeld code -1
Emergence of Object Segmentation in Perturbed Generative Models Adam Bielski, Paolo Favaro code -1
Optimal Sparse Decision Trees Xiyang Hu, Cynthia Rudin, Margo I. Seltzer code -1
Escaping from saddle points on Riemannian manifolds Yue Sun, Nicolas Flammarion, Maryam Fazel code -1
Multi-source Domain Adaptation for Semantic Segmentation Sicheng Zhao, Bo Li, Xiangyu Yue, Yang Gu, Pengfei Xu, Runbo Hu, Hua Chai, Kurt Keutzer code -1
Localized Structured Prediction Carlo Ciliberto, Francis R. Bach, Alessandro Rudi code -1
Nonzero-sum Adversarial Hypothesis Testing Games Sarath Yasodharan, Patrick Loiseau code -1
Manifold-regression to predict from MEG/EEG brain signals without source modeling David Sabbagh, Pierre Ablin, Gaël Varoquaux, Alexandre Gramfort, Denis A. Engemann code -1
Modeling Tabular data using Conditional GAN Lei Xu, Maria Skoularidou, Alfredo CuestaInfante, Kalyan Veeramachaneni code -1
Normalization Helps Training of Quantized LSTM Lu Hou, Jinhua Zhu, James T. Kwok, Fei Gao, Tao Qin, TieYan Liu code -1
Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration Clarice Poon, Jingwei Liang code -1
Deep Scale-spaces: Equivariance Over Scale Daniel E. Worrall, Max Welling code -1
GRU-ODE-Bayes: Continuous Modeling of Sporadically-Observed Time Series Edward De Brouwer, Jaak Simm, Adam Arany, Yves Moreau code -1
Estimating Convergence of Markov chains with L-Lag Couplings Niloy Biswas, Pierre E. Jacob, Paul Vanetti code -1
Learning-Based Low-Rank Approximations Piotr Indyk, Ali Vakilian, Yang Yuan code -1
Implicit Regularization in Deep Matrix Factorization Sanjeev Arora, Nadav Cohen, Wei Hu, Yuping Luo code -1
List-decodable Linear Regression Sushrut Karmalkar, Adam R. Klivans, Pravesh Kothari code -1
Learning elementary structures for 3D shape generation and matching Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry code -1
On the Hardness of Robust Classification Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, James Worrell code -1
Foundations of Comparison-Based Hierarchical Clustering Debarghya Ghoshdastidar, Michaël Perrot, Ulrike von Luxburg code -1
What the Vec? Towards Probabilistically Grounded Embeddings Carl Allen, Ivana Balazevic, Timothy M. Hospedales code -1
Minimizers of the Empirical Risk and Risk Monotonicity Marco Loog, Tom J. Viering, Alexander Mey code -1
Explicit Planning for Efficient Exploration in Reinforcement Learning Liangpeng Zhang, Ke Tang, Xin Yao code -1
Lower Bounds on Adversarial Robustness from Optimal Transport Arjun Nitin Bhagoji, Daniel Cullina, Prateek Mittal code -1
Neural Spline Flows Conor Durkan, Artur Bekasov, Iain Murray, George Papamakarios code -1
Phase Transitions and Cyclic Phenomena in Bandits with Switching Constraints David SimchiLevi, Yunzong Xu code -1
Latent Weights Do Not Exist: Rethinking Binarized Neural Network Optimization Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, KwangTing Cheng, Roeland Nusselder code -1
Nonlinear scaling of resource allocation in sensory bottlenecks Laura Rose Edmondson, Alejandro JiménezRodríguez, Hannes P. Saal code -1
Constrained Reinforcement Learning Has Zero Duality Gap Santiago Paternain, Luiz F. O. Chamon, Miguel CalvoFullana, Alejandro Ribeiro code -1
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules Niklas W. A. Gebauer, Michael Gastegger, Kristof Schütt code -1
An adaptive nearest neighbor rule for classification Akshay Balsubramani, Sanjoy Dasgupta, Yoav Freund, Shay Moran code -1
Coresets for Clustering with Fairness Constraints Lingxiao Huang, Shaofeng H.C. Jiang, Nisheeth K. Vishnoi code -1
PerspectiveNet: A Scene-consistent Image Generator for New View Synthesis in Real Indoor Environments David Novotný, Benjamin Graham, Jeremy Reizenstein code -1
MAVEN: Multi-Agent Variational Exploration Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, Shimon Whiteson code -1
Competitive Gradient Descent Florian Schäfer, Anima Anandkumar code -1
Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses Ulysse MarteauFerey, Francis R. Bach, Alessandro Rudi code -1
Continual Unsupervised Representation Learning Dushyant Rao, Francesco Visin, Andrei A. Rusu, Razvan Pascanu, Yee Whye Teh, Raia Hadsell code -1
Self-Routing Capsule Networks Taeyoung Hahn, Myeongjang Pyeon, Gunhee Kim code -1
The Parameterized Complexity of Cascading Portfolio Scheduling Eduard Eiben, Robert Ganian, Iyad Kanj, Stefan Szeider code -1
Maximum Expected Hitting Cost of a Markov Decision Process and Informativeness of Rewards Falcon Z. Dai, Matthew R. Walter code -1
Bipartite expander Hopfield networks as self-decoding high-capacity error correcting codes Rishidev Chaudhuri, Ila Fiete code -1
Sequence Modeling with Unconstrained Generation Order Dmitrii Emelianenko, Elena Voita, Pavel Serdyukov code -1
Probabilistic Logic Neural Networks for Reasoning Meng Qu, Jian Tang code -1
A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families Brian Axelrod, Ilias Diakonikolas, Alistair Stewart, Anastasios Sidiropoulos, Gregory Valiant code -1
A Unifying Framework for Spectrum-Preserving Graph Sparsification and Coarsening Gecia Bravo Hermsdorff, Lee M. Gunderson code -1
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond Xuechen Li, Yi Wu, Lester Mackey code -1
The Implicit Bias of AdaGrad on Separable Data Qian Qian, Xiaoyuan Qian code -1
On two ways to use determinantal point processes for Monte Carlo integration Guillaume Gautier, Rémi Bardenet, Michal Valko code -1
LiteEval: A Coarse-to-Fine Framework for Resource Efficient Video Recognition Zuxuan Wu, Caiming Xiong, YuGang Jiang, Larry S. Davis code -1
How degenerate is the parametrization of neural networks with the ReLU activation function? Dennis Elbrächter, Julius Berner, Philipp Grohs code -1
Spike-Train Level Backpropagation for Training Deep Recurrent Spiking Neural Networks Wenrui Zhang, Peng Li code -1
Re-examination of the Role of Latent Variables in Sequence Modeling Guokun Lai, Zihang Dai, Yiming Yang, Shinjae Yoo code -1
Max-value Entropy Search for Multi-Objective Bayesian Optimization Syrine Belakaria, Aryan Deshwal, Janardhan Rao Doppa code -1
Stein Variational Gradient Descent With Matrix-Valued Kernels Dilin Wang, Ziyang Tang, Chandrajit Bajaj, Qiang Liu code -1
Crowdsourcing via Pairwise Co-occurrences: Identifiability and Algorithms Shahana Ibrahim, Xiao Fu, Nikolaos Kargas, Kejun Huang code -1
Detecting Overfitting via Adversarial Examples Roman Werpachowski, András György, Csaba Szepesvári code -1
A Unified Bellman Optimality Principle Combining Reward Maximization and Empowerment Felix Leibfried, Sergio PascualDiaz, Jordi GrauMoya code -1
SMILe: Scalable Meta Inverse Reinforcement Learning through Context-Conditional Policies Seyed Kamyar Seyed Ghasemipour, Shixiang Gu, Richard S. Zemel code -1
Towards Understanding the Importance of Shortcut Connections in Residual Networks Tianyi Liu, Minshuo Chen, Mo Zhou, Simon S. Du, Enlu Zhou, Tuo Zhao code -1
Modular Universal Reparameterization: Deep Multi-task Learning Across Diverse Domains Elliot Meyerson, Risto Miikkulainen code -1
Solving Interpretable Kernel Dimensionality Reduction Chieh Wu, Jared Miller, Yale Chang, Mario Sznaier, Jennifer G. Dy code -1
Interaction Hard Thresholding: Consistent Sparse Quadratic Regression in Sub-quadratic Time and Space Shuo Yang, Yanyao Shen, Sujay Sanghavi code -1
A Model to Search for Synthesizable Molecules John Bradshaw, Brooks Paige, Matt J. Kusner, Marwin H. S. Segler, José Miguel HernándezLobato code -1
Post training 4-bit quantization of convolutional networks for rapid-deployment Ron Banner, Yury Nahshan, Daniel Soudry code -1
Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, Richard E. Turner code -1
Differentially Private Anonymized Histograms Ananda Theertha Suresh code -1
Dynamic Local Regret for Non-convex Online Forecasting Sergül Aydöre, Tianhao Zhu, Dean P. Foster code -1
Learning Local Search Heuristics for Boolean Satisfiability Emre Yolcu, Barnabás Póczos code -1
Provably Efficient Q-Learning with Low Switching Cost Yu Bai, Tengyang Xie, Nan Jiang, YuXiang Wang code -1
Solving graph compression via optimal transport Vikas K. Garg, Tommi S. Jaakkola code -1
PyTorch: An Imperative Style, High-Performance Deep Learning Library Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, Soumith Chintala code -1
Stability of Graph Scattering Transforms Fernando Gama, Alejandro Ribeiro, Joan Bruna code -1
A Debiased MDI Feature Importance Measure for Random Forests Xiao Li, Yu Wang, Sumanta Basu, Karl Kumbier, Bin Yu code -1
Provably Efficient Q-learning with Function Approximation via Distribution Shift Error Checking Oracle Simon S. Du, Yuping Luo, Ruosong Wang, Hanrui Zhang code -1
Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models Shanshan Wu, Sujay Sanghavi, Alexandros G. Dimakis code -1
Fast Convergence of Natural Gradient Descent for Over-Parameterized Neural Networks Guodong Zhang, James Martens, Roger B. Grosse code -1
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices Santosh S. Vempala, Andre Wibisono code -1
Learning Distributions Generated by One-Layer ReLU Networks Shanshan Wu, Alexandros G. Dimakis, Sujay Sanghavi code -1
Large-scale optimal transport map estimation using projection pursuit Cheng Meng, Yuan Ke, Jingyi Zhang, Mengrui Zhang, Wenxuan Zhong, Ping Ma code -1
A Structured Prediction Approach for Generalization in Cooperative Multi-Agent Reinforcement Learning Nicolas Carion, Nicolas Usunier, Gabriel Synnaeve, Alessandro Lazaric code -1
On Exact Computation with an Infinitely Wide Neural Net Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang code -1
Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function Gradient Estimators for Reinforcement Learning Gregory Farquhar, Shimon Whiteson, Jakob N. Foerster code -1
Chirality Nets for Human Pose Regression Raymond A. Yeh, YuanTing Hu, Alexander G. Schwing code -1
Efficient Approximation of Deep ReLU Networks for Functions on Low Dimensional Manifolds Minshuo Chen, Haoming Jiang, Wenjing Liao, Tuo Zhao code -1
Fast Decomposable Submodular Function Minimization using Constrained Total Variation Senanayak Sesh Kumar Karri, Francis R. Bach, Thomas Pock code -1
Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl, Christopher J. Shallue, Roger B. Grosse code -1
Spherical Text Embedding Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang, Lance M. Kaplan, Jiawei Han code -1
Möbius Transformation for Fast Inner Product Search on Graph Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, Ping Li code -1
Hyperbolic Graph Neural Networks Qi Liu, Maximilian Nickel, Douwe Kiela code -1
Average Individual Fairness: Algorithms, Generalization and Experiments Saeed SharifiMalvajerdi, Michael J. Kearns, Aaron Roth code -1
Fixing the train-test resolution discrepancy Hugo Touvron, Andrea Vedaldi, Matthijs Douze, Hervé Jégou code -1
Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes Lingge Li, Dustin S. Pluta, Babak Shahbaba, Norbert Fortin, Hernando Ombao, Pierre Baldi code -1
Manipulating a Learning Defender and Ways to Counteract Jiarui Gan, Qingyu Guo, Long TranThanh, Bo An, Michael J. Wooldridge code -1
Learning-In-The-Loop Optimization: End-To-End Control And Co-Design Of Soft Robots Through Learned Deep Latent Representations Andrew Spielberg, Allan Zhao, Yuanming Hu, Tao Du, Wojciech Matusik, Daniela Rus code -1
Learning to Infer Implicit Surfaces without 3D Supervision Shichen Liu, Shunsuke Saito, Weikai Chen, Hao Li code -1
Fast and Accurate Least-Mean-Squares Solvers Alaa Maalouf, Ibrahim Jubran, Dan Feldman code -1
Certifiable Robustness to Graph Perturbations Aleksandar Bojchevski, Stephan Günnemann code -1
Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay Frederic Koehler code -1
Paradoxes in Fair Machine Learning Paul Gölz, Anson Kahng, Ariel D. Procaccia code -1
Provably Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost Zhuoran Yang, Yongxin Chen, Mingyi Hong, Zhaoran Wang code -1
The spiked matrix model with generative priors Benjamin Aubin, Bruno Loureiro, Antoine Maillard, Florent Krzakala, Lenka Zdeborová code -1
Gradient Dynamics of Shallow Univariate ReLU Networks Francis Williams, Matthew Trager, Daniele Panozzo, Cláudio T. Silva, Denis Zorin, Joan Bruna code -1
Robust and Communication-Efficient Collaborative Learning Amirhossein Reisizadeh, Hossein Taheri, Aryan Mokhtari, Hamed Hassani, Ramtin Pedarsani code -1
Multiclass Learning from Contradictions Sauptik Dhar, Vladimir Cherkassky, Mohak Shah code -1
Learning from Trajectories via Subgoal Discovery Sujoy Paul, Jeroen van Baar, Amit K. RoyChowdhury code -1
Distributed Low-rank Matrix Factorization With Exact Consensus Zhihui Zhu, Qiuwei Li, Xinshuo Yang, Gongguo Tang, Michael B. Wakin code -1
Online Normalization for Training Neural Networks Vitaliy Chiley, Ilya Sharapov, Atli Kosson, Urs Köster, Ryan Reece, Sofia Samaniego de la Fuente, Vishal Subbiah, Michael James code -1
The Synthesis of XNOR Recurrent Neural Networks with Stochastic Logic Arash Ardakani, Zhengyun Ji, Amir Ardakani, Warren J. Gross code -1
An adaptive Mirror-Prox method for variational inequalities with singular operators Kimon Antonakopoulos, Elena Veronica Belmega, Panayotis Mertikopoulos code -1
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules Shengchao Liu, Mehmet Furkan Demirel, Yingyu Liang code -1
Characterizing the Exact Behaviors of Temporal Difference Learning Algorithms Using Markov Jump Linear System Theory Bin Hu, Usman Ahmed Syed code -1
Facility Location Problem in Differential Privacy Model Revisited Yunus Esencayi, Marco Gaboardi, Shi Li, Di Wang code -1
Energy-Inspired Models: Learning with Sampler-Induced Distributions Dieterich Lawson, George Tucker, Bo Dai, Rajesh Ranganath code -1
Finite-time Analysis of Approximate Policy Iteration for the Linear Quadratic Regulator Karl Krauth, Stephen Tu, Benjamin Recht code -1
A Universally Optimal Multistage Accelerated Stochastic Gradient Method Necdet Serhat Aybat, Alireza Fallah, Mert Gürbüzbalaban, Asuman E. Ozdaglar code -1
From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction Hidenori Tanaka, Aran Nayebi, Niru Maheswaranathan, Lane McIntosh, Stephen Baccus, Surya Ganguli code -1
Large Memory Layers with Product Keys Guillaume Lample, Alexandre Sablayrolles, Marc'Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou code -1
Learning Deterministic Weighted Automata with Queries and Counterexamples Gail Weiss, Yoav Goldberg, Eran Yahav code -1
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha SohlDickstein, Jeffrey Pennington code -1
Time/Accuracy Tradeoffs for Learning a ReLU with respect to Gaussian Marginals Surbhi Goel, Sushrut Karmalkar, Adam R. Klivans code -1
Visualizing and Measuring the Geometry of BERT Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B. Viégas, Andy Coenen, Adam Pearce, Been Kim code -1
Self-Critical Reasoning for Robust Visual Question Answering Jialin Wu, Raymond J. Mooney code -1
Learning to Screen Alon Cohen, Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Shay Moran code -1
A Communication Efficient Stochastic Multi-Block Alternating Direction Method of Multipliers Hao Yu code -1
A Little Is Enough: Circumventing Defenses For Distributed Learning Gilad Baruch, Moran Baruch, Yoav Goldberg code -1
Error Correcting Output Codes Improve Probability Estimation and Adversarial Robustness of Deep Neural Networks Gunjan Verma, Ananthram Swami code -1
A Robust Non-Clairvoyant Dynamic Mechanism for Contextual Auctions Yuan Deng, Sébastien Lahaie, Vahab S. Mirrokni code -1
Finite-Sample Analysis for SARSA with Linear Function Approximation Shaofeng Zou, Tengyu Xu, Yingbin Liang code -1
Who is Afraid of Big Bad Minima? Analysis of gradient-flow in spiked matrix-tensor models Stefano Sarao Mannelli, Giulio Biroli, Chiara Cammarota, Florent Krzakala, Lenka Zdeborová code -1
Graph Structured Prediction Energy Networks Colin Graber, Alexander G. Schwing code -1
Private Learning Implies Online Learning: An Efficient Reduction Alon Gonen, Elad Hazan, Shay Moran code -1
Graph Agreement Models for Semi-Supervised Learning Otilia Stretcu, Krishnamurthy Viswanathan, Dana MovshovitzAttias, Emmanouil A. Platanios, Sujith Ravi, Andrew Tomkins code -1
Latent distance estimation for random geometric graphs Ernesto Araya Valdivia, Yohann de Castro code -1
Seeing the Wind: Visual Wind Speed Prediction with a Coupled Convolutional and Recurrent Neural Network Jennifer L. Cardona, Michael F. Howland, John O. Dabiri code -1
The Functional Neural Process Christos Louizos, Xiahan Shi, Klamer Schutte, Max Welling code -1
Recurrent Registration Neural Networks for Deformable Image Registration Robin Sandkühler, Simon Andermatt, Grzegorz Bauman, Sylvia Nyilas, Christoph Jud, Philippe C. Cattin code -1
Unsupervised State Representation Learning in Atari Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, MarcAlexandre Côté, R. Devon Hjelm code -1
Unlocking Fairness: a Trade-off Revisited Michael L. Wick, Swetasudha Panda, JeanBaptiste Tristan code -1
Fisher Efficient Inference of Intractable Models Song Liu, Takafumi Kanamori, Wittawat Jitkrittum, Yu Chen code -1
Thompson Sampling and Approximate Inference My Phan, Yasin AbbasiYadkori, Justin Domke code -1
PRNet: Self-Supervised Learning for Partial-to-Partial Registration Yue Wang, Justin M. Solomon code -1
Surrogate Objectives for Batch Policy Optimization in One-step Decision Making Minmin Chen, Ramki Gummadi, Chris Harris, Dale Schuurmans code -1
Modelling heterogeneous distributions with an Uncountable Mixture of Asymmetric Laplacians Axel Brando, José A. RodríguezSerrano, Jordi Vitrià, Alberto Rubio code -1
Learning Macroscopic Brain Connectomes via Group-Sparse Factorization Farzane Aminmansour, Andrew Patterson, Lei Le, Yisu Peng, Daniel Mitchell, Franco Pestilli, Cesar F. Caiafa, Russell Greiner, Martha White code -1
Approximating the Permanent by Sampling from Adaptive Partitions Jonathan Kuck, Tri Dao, Hamid Rezatofighi, Ashish Sabharwal, Stefano Ermon code -1
Retrosynthesis Prediction with Conditional Graph Logic Network Hanjun Dai, Chengtao Li, Connor W. Coley, Bo Dai, Le Song code -1
Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive Algorithm Configuration Robert Kleinberg, Kevin LeytonBrown, Brendan Lucier, Devon R. Graham code -1
Online Learning via the Differential Privacy Lens Jacob D. Abernethy, Young Hun Jung, Chansoo Lee, Audra McMillan, Ambuj Tewari code -1
PerspectiveNet: 3D Object Detection from a Single RGB Image via Perspective Points Siyuan Huang, Yixin Chen, Tao Yuan, Siyuan Qi, Yixin Zhu, SongChun Zhu code -1
Parameter elimination in particle Gibbs sampling Anna Wigren, Riccardo Sven Risuleo, Lawrence Murray, Fredrik Lindsten code -1
This Looks Like That: Deep Learning for Interpretable Image Recognition Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, Jonathan Su code -1
Adaptively Aligned Image Captioning via Adaptive Attention Time Lun Huang, Wenmin Wang, Yaxian Xia, Jie Chen code -1
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning Jeremiah Z. Liu, John W. Paisley, MarianthiAnna Kioumourtzoglou, Brent A. Coull code -1
Learning Bayesian Networks with Low Rank Conditional Probability Tables Adarsh Barik, Jean Honorio code -1
Equal Opportunity in Online Classification with Partial Feedback Yahav Bechavod, Katrina Ligett, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu code -1
Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth S. Spelke, Josh Tenenbaum, Tomer D. Ullman code -1
Neural Multisensory Scene Inference Jae Hyun Lim, Pedro O. Pinheiro, Negar Rostamzadeh, Chris Pal, Sungjin Ahn code -1
Regret Bounds for Thompson Sampling in Episodic Restless Bandit Problems Young Hun Jung, Ambuj Tewari code -1
What Can ResNet Learn Efficiently, Going Beyond Kernels? Zeyuan AllenZhu, Yuanzhi Li code -1
Better Transfer Learning with Inferred Successor Maps Tamas Madarasz, Tim E. J. Behrens code -1
Unsupervised Co-Learning on G-Manifolds Across Irreducible Representations Yifeng Fan, Tingran Gao, Zhizhen Zhao code -1
Defending Against Neural Fake News Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, Yejin Choi code -1
Sample Adaptive MCMC Michael Zhu code -1
A Stochastic Composite Gradient Method with Incremental Variance Reduction Junyu Zhang, Lin Xiao code -1
Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses Ananya Uppal, Shashank Singh, Barnabás Póczos code -1
STAR-Caps: Capsule Networks with Straight-Through Attentive Routing Karim Ahmed, Lorenzo Torresani code -1
Limitations of Lazy Training of Two-layers Neural Network Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, Andrea Montanari code -1
Reconciling meta-learning and continual learning with online mixtures of tasks Ghassen Jerfel, Erin Grant, Tom Griffiths, Katherine A. Heller code -1
Distributionally Robust Optimization and Generalization in Kernel Methods Matthew Staib, Stefanie Jegelka code -1
A General Theory of Equivariant CNNs on Homogeneous Spaces Taco S. Cohen, Mario Geiger, Maurice Weiler code -1
Trivializations for Gradient-Based Optimization on Manifolds Mario Lezcano Casado code -1
Write, Execute, Assess: Program Synthesis with a REPL Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, Armando SolarLezama code -1
A Meta-Analysis of Overfitting in Machine Learning Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht, Sara FridovichKeil, Moritz Hardt, John Miller, Ludwig Schmidt code -1
(Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated Random Graphs Boaz Barak, ChiNing Chou, Zhixian Lei, Tselil Schramm, Yueqi Sheng code -1
Preference-Based Batch and Sequential Teaching: Towards a Unified View of Models Farnam Mansouri, Yuxin Chen, Ara Vartanian, Xiaojin (Jerry) Zhu, Adish Singla code -1
Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback Mingrui Zhang, Lin Chen, Hamed Hassani, Amin Karbasi code -1
Sampling Networks and Aggregate Simulation for Online POMDP Planning Hao Cui, Roni Khardon code -1
Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks Gabriele Farina, Chun Kai Ling, Fei Fang, Tuomas Sandholm code -1
GNNExplainer: Generating Explanations for Graph Neural Networks Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, Jure Leskovec code -1
Linear Stochastic Bandits Under Safety Constraints Sanae Amani, Mahnoosh Alizadeh, Christos Thrampoulidis code -1
A coupled autoencoder approach for multi-modal analysis of cell types Rohan Gala, Nathan Gouwens, Zizhen Yao, Agata Budzillo, Osnat Penn, Bosiljka Tasic, Gabe Murphy, Hongkui Zeng, Uygar Sümbül code -1
Towards Automatic Concept-based Explanations Amirata Ghorbani, James Wexler, James Y. Zou, Been Kim code -1
Deep Generative Video Compression Salvator Lombardo, Jun Han, Christopher Schroers, Stephan Mandt code -1
Budgeted Reinforcement Learning in Continuous State Space Nicolas Carrara, Edouard Leurent, Romain Laroche, Tanguy Urvoy, OdalricAmbrym Maillard, Olivier Pietquin code -1
Discovery of Useful Questions as Auxiliary Tasks Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L. Lewis, Junhyuk Oh, Hado van Hasselt, David Silver, Satinder Singh code -1
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto code -1
Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias Stéphane d'Ascoli, Levent Sagun, Giulio Biroli, Joan Bruna code -1
Correlation clustering with local objectives Sanchit Kalhan, Konstantin Makarychev, Timothy Zhou code -1
Multiclass Performance Metric Elicitation Gaurush Hiranandani, Shant Boodaghians, Ruta Mehta, Oluwasanmi Koyejo code -1
Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing Zhiqi Bu, Jason M. Klusowski, Cynthia Rush, Weijie J. Su code -1
Explicit Explore-Exploit Algorithms in Continuous State Spaces Mikael Henaff code -1
ADDIS: an adaptive discarding algorithm for online FDR control with conservative nulls Jinjin Tian, Aaditya Ramdas code -1
Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices Vincent S. Chen, Sen Wu, Alexander J. Ratner, Jen Weng, Christopher Ré code -1
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse James Lucas, George Tucker, Roger B. Grosse, Mohammad Norouzi code -1
Language as an Abstraction for Hierarchical Deep Reinforcement Learning Yiding Jiang, Shixiang Gu, Kevin Murphy, Chelsea Finn code -1
Efficient online learning with kernels for adversarial large scale problems Rémi Jézéquel, Pierre Gaillard, Alessandro Rudi code -1
A Linearly Convergent Method for Non-Smooth Non-Convex Optimization on the Grassmannian with Applications to Robust Subspace and Dictionary Learning Zhihui Zhu, Tianyu Ding, Daniel P. Robinson, Manolis C. Tsakiris, René Vidal code -1
ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenenbaum, Boris Katz code -1
Certified Adversarial Robustness with Additive Noise Bai Li, Changyou Chen, Wenlin Wang, Lawrence Carin code -1
Tight Dimensionality Reduction for Sketching Low Degree Polynomial Kernels Michela Meister, Tamás Sarlós, David P. Woodruff code -1
Non-Cooperative Inverse Reinforcement Learning Xiangyuan Zhang, Kaiqing Zhang, Erik Miehling, Tamer Basar code -1
DINGO: Distributed Newton-Type Method for Gradient-Norm Optimization Rixon Crane, Fred Roosta code -1
Sobolev Independence Criterion Youssef Mroueh, Tom Sercu, Mattia Rigotti, Inkit Padhi, Cícero Nogueira dos Santos code -1
Maximum Entropy Monte-Carlo Planning Chenjun Xiao, Ruitong Huang, Jincheng Mei, Dale Schuurmans, Martin Müller code -1
Learning from brains how to regularize machines Zhe Li, Wieland Brendel, Edgar Y. Walker, Erick Cobos, Taliah Muhammad, Jacob Reimer, Matthias Bethge, Fabian H. Sinz, Zachary Pitkow, Andreas S. Tolias code -1
Using Statistics to Automate Stochastic Optimization Hunter Lang, Lin Xiao, Pengchuan Zhang code -1
Zero-shot Knowledge Transfer via Adversarial Belief Matching Paul Micaelli, Amos J. Storkey code -1
Differentiable Convex Optimization Layers Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, J. Zico Kolter code -1
Random Tessellation Forests Shufei Ge, Shijia Wang, Yee Whye Teh, Liangliang Wang, Lloyd T. Elliott code -1
Learning Nearest Neighbor Graphs from Noisy Distance Samples Blake Mason, Ardhendu Tripathy, Robert D. Nowak code -1
Lookahead Optimizer: k steps forward, 1 step back Michael R. Zhang, James Lucas, Jimmy Ba, Geoffrey E. Hinton code -1
Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer Wenzheng Chen, Huan Ling, Jun Gao, Edward J. Smith, Jaakko Lehtinen, Alec Jacobson, Sanja Fidler code -1
Covariate-Powered Empirical Bayes Estimation Nikolaos Ignatiadis, Stefan Wager code -1
Understanding the Role of Momentum in Stochastic Gradient Methods Igor Gitman, Hunter Lang, Pengchuan Zhang, Lin Xiao code -1
A neurally plausible model for online recognition and postdiction in a dynamical environment Li Kevin Wenliang, Maneesh Sahani code -1
Guided Meta-Policy Search Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, Chelsea Finn code -1
Towards Optimal Off-Policy Evaluation for Reinforcement Learning with Marginalized Importance Sampling Tengyang Xie, Yifei Ma, YuXiang Wang code -1
Contextual Bandits with Cross-Learning Santiago R. Balseiro, Negin Golrezaei, Mohammad Mahdian, Vahab S. Mirrokni, Jon Schneider code -1
Evaluating Protein Transfer Learning with TAPE Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John F. Canny, Pieter Abbeel, Yun S. Song code -1
A Bayesian Theory of Conformity in Collective Decision Making Koosha Khalvati, Saghar Mirbagheri, Seongmin A. Park, JeanClaude Dreher, Rajesh P. Rao code -1
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel Colin Wei, Jason D. Lee, Qiang Liu, Tengyu Ma code -1
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation Colin Wei, Tengyu Ma code -1
A Benchmark for Interpretability Methods in Deep Neural Networks Sara Hooker, Dumitru Erhan, PieterJan Kindermans, Been Kim code -1
Memory Efficient Adaptive Optimization Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer code -1
Dynamic Incentive-Aware Learning: Robust Pricing in Contextual Auctions Negin Golrezaei, Adel Javanmard, Vahab S. Mirrokni code -1
Convergence-Rate-Matching Discretization of Accelerated Optimization Flows Through Opportunistic State-Triggered Control Miguel Vaquero, Jorge Cortés code -1
A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning Xuanqing Liu, Si Si, Jerry Zhu, Yang Li, ChoJui Hsieh code -1
Compositional generalization through meta sequence-to-sequence learning Brenden M. Lake code -1
Bayesian Joint Estimation of Multiple Graphical Models Lingrui Gan, Xinming Yang, Naveen N. Narisetty, Feng Liang code -1
Practical Two-Step Lookahead Bayesian Optimization Jian Wu, Peter I. Frazier code -1
Leader Stochastic Gradient Descent for Distributed Training of Deep Learning Models Yunfei Teng, Wenbo Gao, Anna Choromanska, Donald Goldfarb, Adrian Weller code -1
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks Hadi Salman, Greg Yang, Huan Zhang, ChoJui Hsieh, Pengchuan Zhang code -1
Neural Jump Stochastic Differential Equations Junteng Jia, Austin R. Benson code -1
Learning metrics for persistence-based summaries and applications for graph classification Qi Zhao, Yusu Wang code -1
On the Value of Target Data in Transfer Learning Steve Hanneke, Samory Kpotufe code -1
Stochastic Variance Reduced Primal Dual Algorithms for Empirical Composition Optimization Adithya M. Devraj, Jianshu Chen code -1
On Robustness of Principal Component Regression Anish Agarwal, Devavrat Shah, Dennis Shen, Dogyoon Song code -1
Meta Learning with Relational Information for Short Sequences Yujia Xie, Haoming Jiang, Feng Liu, Tuo Zhao, Hongyuan Zha code -1
Residual Flows for Invertible Generative Modeling Tian Qi Chen, Jens Behrmann, David Duvenaud, JörnHenrik Jacobsen code -1
Multi-Agent Common Knowledge Reinforcement Learning Christian Schröder de Witt, Jakob N. Foerster, Gregory Farquhar, Philip H. S. Torr, Wendelin Boehmer, Shimon Whiteson code -1
Learning to Learn By Self-Critique Antreas Antoniou, Amos J. Storkey code -1
Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes Greg Yang code -1
Neural Networks with Cheap Differential Operators Tian Qi Chen, David Duvenaud code -1
Transductive Zero-Shot Learning with Visual Structure Constraint Ziyu Wan, Dongdong Chen, Yan Li, Xingguang Yan, Junge Zhang, Yizhou Yu, Jing Liao code -1
Dying Experts: Efficient Algorithms with Optimal Regret Bounds Hamid Shayestehmanesh, Sajjad Azami, Nishant A. Mehta code -1
Model Similarity Mitigates Test Set Overuse Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, Benjamin Recht code -1
A unified theory for the origin of grid cells through the lens of pattern formation Ben Sorscher, Gabriel Mel, Surya Ganguli, Samuel A. Ocko code -1
On Sample Complexity Upper and Lower Bounds for Exact Ranking from Noisy Comparisons Wenbo Ren, Jia Liu, Ness B. Shroff code -1
Hierarchical Decision Making by Generating and Following Natural Language Instructions Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuandong Tian, Mike Lewis code -1
SHE: A Fast and Accurate Deep Neural Network for Encrypted Data Qian Lou, Lei Jiang code -1
Locality-Sensitive Hashing for f-Divergences: Mutual Information Loss and Beyond Lin Chen, Hossein Esfandiari, Gang Fu, Vahab S. Mirrokni code -1
A Game Theoretic Approach to Class-wise Selective Rationalization Shiyu Chang, Yang Zhang, Mo Yu, Tommi S. Jaakkola code -1
Efficiently avoiding saddle points with zero order methods: No gradients required EmmanouilVasileios VlatakisGkaragkounis, Lampros Flokas, Georgios Piliouras code -1
Metamers of neural networks reveal divergence from human perceptual systems Jenelle Feather, Alex Durango, Ray Gonzalez, Josh H. McDermott code -1
Spatial-Aware Feature Aggregation for Image based Cross-View Geo-Localization Yujiao Shi, Liu Liu, Xin Yu, Hongdong Li code -1
Decentralized sketching of low rank matrices Rakshith Sharma Srinivasa, Kiryung Lee, Marius Junge, Justin Romberg code -1
Average Case Column Subset Selection for Entrywise 퓁1-Norm Loss Zhao Song, David P. Woodruff, Peilin Zhong code -1
Efficient Forward Architecture Search Hanzhang Hu, John Langford, Rich Caruana, Saurajit Mukherjee, Eric Horvitz, Debadeepta Dey code -1
Unsupervised Meta-Learning for Few-Shot Image Classification Siavash Khodadadeh, Ladislau Bölöni, Mubarak Shah code -1
Learning Mixtures of Plackett-Luce Models from Structured Partial Orders Zhibing Zhao, Lirong Xia code -1
Certainty Equivalence is Efficient for Linear Quadratic Control Horia Mania, Stephen Tu, Benjamin Recht code -1
Scalable Bayesian inference of dendritic voltage via spatiotemporal recurrent state space models Ruoxi Sun, Scott W. Linderman, Ian Kinsella, Liam Paninski code -1
Logarithmic Regret for Online Control Naman Agarwal, Elad Hazan, Karan Singh code -1
Elliptical Perturbations for Differential Privacy Matthew Reimherr, Jordan Awan code -1
Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, Yang Liu code -1
KNG: The K-Norm Gradient Mechanism Matthew Reimherr, Jordan Awan code -1
CXPlain: Causal Explanations for Model Interpretation under Uncertainty Patrick Schwab, Walter Karlen code -1
Regularized Anderson Acceleration for Off-Policy Deep Reinforcement Learning Wenjie Shi, Shiji Song, Hui Wu, YaChu Hsu, Cheng Wu, Gao Huang code -1
STREETS: A Novel Camera Network Dataset for Traffic Flow Corey Snyder, Minh Do code -1
Sequential Neural Processes Gautam Singh, Jaesik Yoon, Youngsung Son, Sungjin Ahn code -1
Policy Continuation with Hindsight Inverse Dynamics Hao Sun, Zhizhong Li, Xiaotong Liu, Bolei Zhou, Dahua Lin code -1
Learning to Self-Train for Semi-Supervised Few-Shot Classification Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao Zheng, TatSeng Chua, Bernt Schiele code -1
Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations Sawyer Birnbaum, Volodymyr Kuleshov, S. Zayd Enam, Pang Wei Koh, Stefano Ermon code -1
From Complexity to Simplicity: Adaptive ES-Active Subspaces for Blackbox Optimization Krzysztof Choromanski, Aldo Pacchiano, Jack ParkerHolder, Yunhao Tang, Vikas Sindhwani code -1
On the Expressive Power of Deep Polynomial Neural Networks Joe Kileel, Matthew Trager, Joan Bruna code -1
DETOX: A Redundancy-based Framework for Faster and More Robust Gradient Aggregation Shashank Rajput, Hongyi Wang, Zachary Charles, Dimitris S. Papailiopoulos code -1
Can SGD Learn Recurrent Neural Networks with Provable Generalization? Zeyuan AllenZhu, Yuanzhi Li code -1
Limits of Private Learning with Access to Public Data Raef Bassily, Shay Moran, Noga Alon code -1
Discrete Object Generation with Reversible Inductive Construction Ari Seff, Wenda Zhou, Farhan N. Damani, Abigail G. Doyle, Ryan P. Adams code -1
Efficient Near-Optimal Testing of Community Changes in Balanced Stochastic Block Models Aditya Gangrade, Praveen Venkatesh, Bobak Nazer, Venkatesh Saligrama code -1
Keeping Your Distance: Solving Sparse Reward Tasks Using Self-Balancing Shaped Rewards Alexander Trott, Stephan Zheng, Caiming Xiong, Richard Socher code -1
Superset Technique for Approximate Recovery in One-Bit Compressed Sensing Larkin Flodin, Venkata Gandikota, Arya Mazumdar code -1
Bandits with Feedback Graphs and Switching Costs Raman Arora, Teodor Vanislavov Marinov, Mehryar Mohri code -1
Functional Adversarial Attacks Cassidy Laidlaw, Soheil Feizi code -1
Statistical-Computational Tradeoff in Single Index Models Lingxiao Wang, Zhuoran Yang, Zhaoran Wang code -1
On Fenchel Mini-Max Learning Chenyang Tao, Liqun Chen, Shuyang Dai, Junya Chen, Ke Bai, Dong Wang, Jianfeng Feng, Wenlian Lu, Georgiy V. Bobashev, Lawrence Carin code -1
MarginGAN: Adversarial Training in Semi-Supervised Learning Jinhao Dong, Tong Lin code -1
Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games EmmanouilVasileios VlatakisGkaragkounis, Lampros Flokas, Georgios Piliouras code -1
A unified variance-reduced accelerated gradient method for convex optimization Guanghui Lan, Zhize Li, Yi Zhou code -1
Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi code -1
Same-Cluster Querying for Overlapping Clusters Wasim Huleihel, Arya Mazumdar, Muriel Médard, Soumyabrata Pal code -1
Efficient Convex Relaxations for Streaming PCA Raman Arora, Teodor Vanislavov Marinov code -1
Learning Robust Global Representations by Penalizing Local Predictive Power Haohan Wang, Songwei Ge, Zachary C. Lipton, Eric P. Xing code -1
Unsupervised Curricula for Visual Meta-Reinforcement Learning Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, Chelsea Finn code -1
Sample Complexity of Learning Mixture of Sparse Linear Regressions Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, Soumyabrata Pal code -1
Large Scale Adversarial Representation Learning Jeff Donahue, Karen Simonyan code -1
G2SAT: Learning to Generate SAT Formulas Jiaxuan You, Haoze Wu, Clark W. Barrett, Raghuram Ramanujan, Jure Leskovec code -1
Neural Trust Region/Proximal Policy Optimization Attains Globally Optimal Policy Boyi Liu, Qi Cai, Zhuoran Yang, Zhaoran Wang code -1
Dimensionality reduction: theoretical perspective on practical measures Yair Bartal, Nova Fandina, Ofer Neiman code -1
Oracle-Efficient Algorithms for Online Linear Optimization with Bandit Feedback Shinji Ito, Daisuke Hatano, Hanna Sumita, Kei Takemura, Takuro Fukunaga, Naonori Kakimura, Kenichi Kawarabayashi code -1
Multilabel reductions: what is my loss optimising? code -1
Tight Sample Complexity of Learning One-hidden-layer Convolutional Neural Networks Yuan Cao, Quanquan Gu code -1
Deep Gamblers: Learning to Abstain with Portfolio Theory Ziyin Liu, Zhikang Wang, Paul Pu Liang, Ruslan Salakhutdinov, LouisPhilippe Morency, Masahito Ueda code -1
Two Time-scale Off-Policy TD Learning: Non-asymptotic Analysis over Markovian Samples Tengyu Xu, Shaofeng Zou, Yingbin Liang code -1
Transfer Learning via Minimizing the Performance Gap Between Domains Boyu Wang, Jorge A. Mendez, Mingbo Cai, Eric Eaton code -1
Splitting Steepest Descent for Growing Neural Architectures Lemeng Wu, Dilin Wang, Qiang Liu code -1
Sequential Experimental Design for Transductive Linear Bandits Tanner Fiez, Lalit Jain, Kevin G. Jamieson, Lillian J. Ratliff code -1
Time Matters in Regularizing Deep Networks: Weight Decay and Data Augmentation Affect Early Learning Dynamics, Matter Little Near Convergence Aditya Golatkar, Alessandro Achille, Stefano Soatto code -1
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering Ilias Diakonikolas, Daniel Kane, Sushrut Karmalkar, Eric Price, Alistair Stewart code -1
Variational Graph Recurrent Neural Networks Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna R. Narayanan, Nick Duffield, Mingyuan Zhou, Xiaoning Qian code -1
Semi-Implicit Graph Variational Auto-Encoders Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna R. Narayanan, Nick Duffield, Mingyuan Zhou, Xiaoning Qian code -1
Unsupervised Learning of Object Keypoints for Perception and Control Tejas D. Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, Andrew Zisserman, Volodymyr Mnih code -1
A Model-Based Reinforcement Learning with Adversarial Training for Online Recommendation Xueying Bai, Jian Guan, Hongning Wang code -1
Optimizing Generalized Rate Metrics with Three Players Harikrishna Narasimhan, Andrew Cotter, Maya R. Gupta code -1
Consistency-based Semi-supervised Learning for Object detection Jisoo Jeong, Seungeui Lee, Jeesoo Kim, Nojun Kwak code -1
Rates of Convergence for Large-scale Nearest Neighbor Classification Xingye Qiao, Jiexin Duan, Guang Cheng code -1
An Embedding Framework for Consistent Polyhedral Surrogates Jessica Finocchiaro, Rafael M. Frongillo, Bo Waggoner code -1
Cross-Modal Learning with Adversarial Samples Chao Li, Shangqian Gao, Cheng Deng, De Xie, Wei Liu code -1
Fast-rate PAC-Bayes Generalization Bounds via Shifted Rademacher Processes Jun Yang, Shengyang Sun, Daniel M. Roy code -1
Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural Networks Aya Abdelsalam Ismail, Mohamed K. Gunady, Luiz Pessoa, Héctor Corrada Bravo, Soheil Feizi code -1
Program Synthesis and Semantic Parsing with Learned Code Idioms Eui Chul Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, Alex Polozov code -1
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks Yuan Cao, Quanquan Gu code -1
High-Dimensional Optimization in Adaptive Random Subspaces Jonathan Lacotte, Mert Pilanci, Marco Pavone code -1
Random Projections with Asymmetric Quantization Xiaoyun Li, Ping Li code -1
Superposition of many models into one Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, Bruno A. Olshausen code -1
Private Testing of Distributions via Sample Permutations Maryam Aliakbarpour, Ilias Diakonikolas, Daniel Kane, Ronitt Rubinfeld code -1
McDiarmid-Type Inequalities for Graph-Dependent Variables and Stability Bounds Rui Ray Zhang, Xingwu Liu, Yuyi Wang, Liwei Wang code -1
How to Initialize your Network? Robust Initialization for WeightNorm & ResNets Devansh Arpit, Víctor Campos, Yoshua Bengio code -1
On Making Stochastic Classifiers Deterministic Andrew Cotter, Maya R. Gupta, Harikrishna Narasimhan code -1
Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection Xiaoyi Gu, Leman Akoglu, Alessandro Rinaldo code -1
Improving Black-box Adversarial Attacks with a Transfer-based Prior Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, Jun Zhu code -1
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks Sitao Luan, Mingde Zhao, XiaoWen Chang, Doina Precup code -1
Statistical Model Aggregation via Parameter Matching Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan H. Greenewald, Trong Nghia Hoang code -1
On the (In)fidelity and Sensitivity of Explanations ChihKuan Yeh, ChengYu Hsieh, Arun Sai Suggala, David I. Inouye, Pradeep Ravikumar code -1
Exponential Family Estimation via Adversarial Dynamics Embedding Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, Dale Schuurmans code -1
The Broad Optimality of Profile Maximum Likelihood Yi Hao, Alon Orlitsky code -1
MintNet: Building Invertible Neural Networks with Masked Convolutions Yang Song, Chenlin Meng, Stefano Ermon code -1
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates Jeffrey Negrea, Mahdi Haghifam, Gintare Karolina Dziugaite, Ashish Khisti, Daniel M. Roy code -1
On Distributed Averaging for Stochastic k-PCA Aditya Bhaskara, Maheshakya Wijewardena code -1
Controllable Unsupervised Text Attribute Transfer via Editing Entangled Latent Representation Ke Wang, Hang Hua, Xiaojun Wan code -1
MaxGap Bandit: Adaptive Algorithms for Approximate Ranking Sumeet Katariya, Ardhendu Tripathy, Robert D. Nowak code -1
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting Aditya Grover, Jiaming Song, Ashish Kapoor, Kenneth Tran, Alekh Agarwal, Eric Horvitz, Stefano Ermon code -1
Online Forecasting of Total-Variation-bounded Sequences Dheeraj Baby, YuXiang Wang code -1
Local SGD with Periodic Averaging: Tighter Analysis and Adaptive Synchronization Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, Viveck R. Cadambe code -1
Data Parameters: A New Family of Parameters for Learning a Differentiable Curriculum Shreyas Saxena, Oncel Tuzel, Dennis DeCoste code -1
Unified Sample-Optimal Property Estimation in Near-Linear Time Yi Hao, Alon Orlitsky code -1
Region Mutual Information Loss for Semantic Segmentation Shuai Zhao, Yang Wang, Zheng Yang, Deng Cai code -1
Learning Stable Deep Dynamics Models J. Zico Kolter, Gaurav Manek code -1
Image Captioning: Transforming Objects into Words Simao Herdade, Armin Kappeler, Kofi Boakye, Joao Soares code -1
Greedy Sampling for Approximate Clustering in the Presence of Outliers Aditya Bhaskara, Sharvaree Vadgama, Hong Xu code -1
Adversarial Fisher Vectors for Unsupervised Representation Learning Shuangfei Zhai, Walter Talbott, Carlos Guestrin, Joshua M. Susskind code -1
On Tractable Computation of Expected Predictions Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari, Guy Van den Broeck code -1
Levenshtein Transformer Jiatao Gu, Changhan Wang, Junbo Zhao code -1
Unlabeled Data Improves Adversarial Robustness Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C. Duchi, Percy Liang code -1
Machine Teaching of Active Sequential Learners Tomi Peltola, Mustafa Mert Çelikok, Pedram Daee, Samuel Kaski code -1
Gaussian-Based Pooling for Convolutional Neural Networks Takumi Kobayashi code -1
Meta Architecture Search Albert E. Shaw, Wei Wei, Weiyang Liu, Le Song, Bo Dai code -1
NAOMI: Non-Autoregressive Multiresolution Sequence Imputation Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, Yisong Yue code -1
Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, Quanquan Gu code -1
Two Generator Game: Learning to Sample via Linear Goodness-of-Fit Test Lizhong Ding, Mengyang Yu, Li Liu, Fan Zhu, Yong Liu, Yu Li, Ling Shao code -1
Distribution oblivious, risk-aware algorithms for multi-armed bandits with unbounded rewards Anmol Kagrecha, Jayakrishnan Nair, Krishna P. Jagannathan code -1
Private Stochastic Convex Optimization with Optimal Rates Raef Bassily, Vitaly Feldman, Kunal Talwar, Abhradeep Guha Thakurta code -1
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers Hadi Salman, Jerry Li, Ilya P. Razenshteyn, Pengchuan Zhang, Huan Zhang, Sébastien Bubeck, Greg Yang code -1
Demystifying Black-box Models with Symbolic Metamodels Ahmed M. Alaa, Mihaela van der Schaar code -1
Neural Temporal-Difference Learning Converges to Global Optima Qi Cai, Zhuoran Yang, Jason D. Lee, Zhaoran Wang code -1
Privacy-Preserving Q-Learning with Functional Noise in Continuous Spaces Baoxiang Wang, Nidhi Hegde code -1
Attentive State-Space Modeling of Disease Progression Ahmed M. Alaa, Mihaela van der Schaar code -1
Online EXP3 Learning in Adversarial Bandits with Delayed Feedback Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, Jose H. Blanchet code -1
A Direct tilde{O}(1/epsilon) Iteration Parallel Algorithm for Optimal Transport Arun Jambulapati, Aaron Sidford, Kevin Tian code -1
Faster Boosting with Smaller Memory Julaiti Alafate, Yoav Freund code -1
Variance Reduction for Matrix Games Yair Carmon, Yujia Jin, Aaron Sidford, Kevin Tian code -1
Learning Neural Networks with Adaptive Regularization Han Zhao, YaoHung Hubert Tsai, Ruslan Salakhutdinov, Geoffrey J. Gordon code -1
Distributed estimation of the inverse Hessian by determinantal averaging Michal Derezinski, Michael W. Mahoney code -1
Smoothing Structured Decomposable Circuits Andy Shih, Guy Van den Broeck, Paul Beame, Antoine Amarilli code -1
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, George J. Pappas code -1
Provable Non-linear Inductive Matrix Completion Kai Zhong, Zhao Song, Prateek Jain, Inderjit S. Dhillon code -1
Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback Shuai Zheng, Ziyue Huang, James T. Kwok code -1
Sparse Variational Inference: Bayesian Coresets from Scratch Trevor Campbell, Boyan Beronov code -1
Personalizing Many Decisions with High-Dimensional Covariates Nima Hamidi, Mohsen Bayati, Kapil Gupta code -1
A Necessary and Sufficient Stability Notion for Adaptive Generalization Moshe Shenfeld, Katrina Ligett code -1
Necessary and Sufficient Geometries for Gradient Methods Daniel Levy, John C. Duchi code -1
Landmark Ordinal Embedding Nikhil Ghosh, Yuxin Chen, Yisong Yue code -1
Identification of Conditional Causal Effects under Markov Equivalence Amin Jaber, Jiji Zhang, Elias Bareinboim code -1
The Thermodynamic Variational Objective Vaden Masrani, Tuan Anh Le, Frank Wood code -1
Global Guarantees for Blind Demodulation with Generative Priors Paul Hand, Babhru Joshi code -1
Exact sampling of determinantal point processes with sublinear time preprocessing Michal Derezinski, Daniele Calandriello, Michal Valko code -1
Geometry-Aware Neural Rendering Joshua Tobin, Wojciech Zaremba, Pieter Abbeel code -1
Variational Temporal Abstraction Taesup Kim, Sungjin Ahn, Yoshua Bengio code -1
Subquadratic High-Dimensional Hierarchical Clustering Amir Abboud, Vincent CohenAddad, Hussein Houdrouge code -1
Learning Auctions with Robust Incentive Guarantees Jacob D. Abernethy, Rachel Cummings, Bhuvesh Kumar, Sam Taggart, Jamie Morgenstern code -1
Policy Optimization Provably Converges to Nash Equilibria in Zero-Sum Linear Quadratic Games Kaiqing Zhang, Zhuoran Yang, Tamer Basar code -1
Uniform convergence may be unable to explain generalization in deep learning Vaishnavh Nagarajan, J. Zico Kolter code -1
A Zero-Positive Learning Approach for Diagnosing Software Performance Regressions Mejbah Alam, Justin Gottschlich, Nesime Tatbul, Javier S. Turek, Tim Mattson, Abdullah Muzahid code -1
DTWNet: a Dynamic Time Warping Network Xingyu Cai, Tingyang Xu, Jinfeng Yi, Junzhou Huang, Sanguthevar Rajasekaran code -1
Structured Graph Learning Via Laplacian Spectral Constraints Sandeep Kumar, Jiaxi Ying, José Vinícius de Miranda Cardoso, Daniel P. Palomar code -1
Thresholding Bandit with Optimal Aggregate Regret Chao Tao, Saúl A. Blanco, Jian Peng, Yuan Zhou code -1
Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks Yuanzhi Li, Colin Wei, Tengyu Ma code -1
Rethinking Kernel Methods for Node Representation Learning on Graphs Yu Tian, Long Zhao, Xi Peng, Dimitris N. Metaxas code -1
Causal Confusion in Imitation Learning Pim de Haan, Dinesh Jayaraman, Sergey Levine code -1
Optimizing Generalized PageRank Methods for Seed-Expansion Community Detection Pan Li, I (Eli) Chien, Olgica Milenkovic code -1
The Case for Evaluating Causal Models Using Interventional Measures and Empirical Data Amanda Gentzel, Dan Garant, David D. Jensen code -1
Dimension-Free Bounds for Low-Precision Training Zheng Li, Christopher De Sa code -1
Concentration of risk measures: A Wasserstein distance approach Sanjay P. Bhat, Prashanth L. A. code -1
Meta-Inverse Reinforcement Learning with Probabilistic Context Variables Lantao Yu, Tianhe Yu, Chelsea Finn, Stefano Ermon code -1
Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, Sergey Levine code -1
Bayesian Optimization with Unknown Search Space Huong Ha, Santu Rana, Sunil Gupta, Thanh Tang Nguyen, Hung TranThe, Svetha Venkatesh code -1
On the Downstream Performance of Compressed Word Embeddings Avner May, Jian Zhang, Tri Dao, Christopher Ré code -1
Multivariate Distributionally Robust Convex Regression under Absolute Error Loss Jose H. Blanchet, Peter W. Glynn, Jun Yan, Zhengqing Zhou code -1
Neural Relational Inference with Fast Modular Meta-learning Ferran Alet, Erica Weng, Tomás LozanoPérez, Leslie Pack Kaelbling code -1
Gradient based sample selection for online continual learning Rahaf Aljundi, Min Lin, Baptiste Goujaud, Yoshua Bengio code -1
Attribution-Based Confidence Metric For Deep Neural Networks Susmit Jha, Sunny Raj, Steven Lawrence Fernandes, Sumit Kumar Jha, Somesh Jha, Brian Jalaian, Gunjan Verma, Ananthram Swami code -1
Theoretical evidence for adversarial robustness through randomization Rafael Pinot, Laurent Meunier, Alexandre Araujo, Hisashi Kashima, Florian Yger, Cédric GouyPailler, Jamal Atif code -1
Online Continual Learning with Maximal Interfered Retrieval Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, Lucas PageCaccia code -1
Neural Attribution for Semantic Bug-Localization in Student Programs Rahul Gupta, Aditya Kanade, Shirish K. Shevade code -1
Adaptive Temporal-Difference Learning for Policy Evaluation with Per-State Uncertainty Estimates Carlos Riquelme, Hugo Penedones, Damien Vincent, Hartmut Maennel, Sylvain Gelly, Timothy A. Mann, André Barreto, Gergely Neu code -1
SPoC: Search-based Pseudocode to Code Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, Percy Liang code -1
Generative Modeling by Estimating Gradients of the Data Distribution Yang Song, Stefano Ermon code -1
Adversarial Music: Real world Audio Adversary against Wake-word Detection System Juncheng Li, Shuhui Qu, Xinjian Li, Joseph Szurley, J. Zico Kolter, Florian Metze code -1
Prediction of Spatial Point Processes: Regularized Method with Out-of-Sample Guarantees Muhammad Osama, Dave Zachariah, Peter Stoica code -1
Debiased Bayesian inference for average treatment effects Kolyan Ray, Botond Szabó code -1
Margin-Based Generalization Lower Bounds for Boosted Classifiers Allan Grønlund, Lior Kamma, Kasper Green Larsen, Alexander Mathiasen, Jelani Nelson code -1
Connections Between Mirror Descent, Thompson Sampling and the Information Ratio Julian Zimmert, Tor Lattimore code -1
Graph Transformer Networks Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, Hyunwoo J. Kim code -1
Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder Ji Feng, QiZhi Cai, ZhiHua Zhou code -1
The Impact of Regularization on High-dimensional Logistic Regression Fariborz Salehi, Ehsan Abbasi, Babak Hassibi code -1
Adaptive Density Estimation for Generative Models Thomas Lucas, Konstantin Shmelkov, Karteek Alahari, Cordelia Schmid, Jakob Verbeek code -1
Fast and Provable ADMM for Learning with Generative Priors Fabian Latorre Gómez, Armin Eftekhari, Volkan Cevher code -1
Weighted Linear Bandits for Non-Stationary Environments Yoan Russac, Claire Vernade, Olivier Cappé code -1
Improved Regret Bounds for Bandit Combinatorial Optimization Shinji Ito, Daisuke Hatano, Hanna Sumita, Kei Takemura, Takuro Fukunaga, Naonori Kakimura, Kenichi Kawarabayashi code -1
Pareto Multi-Task Learning Xi Lin, HuiLing Zhen, Zhenhua Li, Qingfu Zhang, Sam Kwong code -1
SIC-MMAB: Synchronisation Involves Communication in Multiplayer Multi-Armed Bandits Etienne Boursier, Vianney Perchet code -1
Novel positional encodings to enable tree-based transformers Vighnesh Leonardo Shiv, Chris Quirk code -1
A Domain Agnostic Measure for Monitoring and Evaluating GANs Paulina Grnarova, Kfir Y. Levy, Aurélien Lucchi, Nathanaël Perraudin, Ian Goodfellow, Thomas Hofmann, Andreas Krause code -1
Submodular Function Minimization with Noisy Evaluation Oracle Shinji Ito code -1
Counting the Optimal Solutions in Graphical Models Radu Marinescu, Rina Dechter code -1
Modelling the Dynamics of Multiagent Q-Learning in Repeated Symmetric Games: a Mean Field Theoretic Approach Shuyue Hu, Chinwing Leung, Hofung Leung code -1
Deep Multimodal Multilinear Fusion with High-order Polynomial Pooling Ming Hou, Jiajia Tang, Jianhai Zhang, Wanzeng Kong, Qibin Zhao code -1
Bootstrapping Upper Confidence Bound Botao Hao, Yasin AbbasiYadkori, Zheng Wen, Guang Cheng code -1
Integer Discrete Flows and Lossless Compression Emiel Hoogeboom, Jorn W. T. Peters, Rianne van den Berg, Max Welling code -1
Structured Prediction with Projection Oracles Mathieu Blondel code -1
A Primal Dual Formulation For Deep Learning With Constraints Yatin Nandwani, Abhishek Pathak, Mausam, Parag Singla code -1
Screening Sinkhorn Algorithm for Regularized Optimal Transport Mokhtar Z. Alaya, Maxime Berar, Gilles Gasso, Alain Rakotomamonjy code -1
PAC-Bayes Un-Expected Bernstein Inequality Zakaria Mhammedi, Peter Grünwald, Benjamin Guedj code -1
Are Labels Required for Improving Adversarial Robustness? JeanBaptiste Alayrac, Jonathan Uesato, PoSen Huang, Alhussein Fawzi, Robert Stanforth, Pushmeet Kohli code -1
Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, Shie Mannor code -1
Multi-objective Bayesian optimisation with preferences over objectives Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh code -1
Think out of the "Box": Generically-Constrained Asynchronous Composite Optimization and Hedging Pooria Joulani, András György, Csaba Szepesvári code -1
Calibration tests in multi-class classification: A unifying framework David Widmann, Fredrik Lindsten, Dave Zachariah code -1
Classification Accuracy Score for Conditional Generative Models Suman V. Ravuri, Oriol Vinyals code -1
Theoretical Analysis of Adversarial Learning: A Minimax Approach Zhuozhuo Tu, Jingwei Zhang, Dacheng Tao code -1
Multiagent Evaluation under Incomplete Information Mark Rowland, Shayegan Omidshafiei, Karl Tuyls, Julien Pérolat, Michal Valko, Georgios Piliouras, Rémi Munos code -1
Tree-Sliced Variants of Wasserstein Distances Tam Le, Makoto Yamada, Kenji Fukumizu, Marco Cuturi code -1
Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration Meelis Kull, Miquel PerellóNieto, Markus Kängsepp, Telmo de Menezes e Silva Filho, Hao Song, Peter A. Flach code -1
Comparing distributions: 퓁1 geometry improves kernel two-sample testing Meyer Scetbon, Gaël Varoquaux code -1
Robustness Verification of Tree-based Models Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane S. Boning, ChoJui Hsieh code -1
Towards Interpretable Reinforcement Learning Using Attention Augmented Agents Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, Danilo Jimenez Rezende code -1
Fast and Accurate Stochastic Gradient Estimation Beidi Chen, Yingchen Xu, Anshumali Shrivastava code -1
Theoretical Limits of Pipeline Parallel Optimization and Application to Distributed Deep Learning Igor Colin, Ludovic Dos Santos, Kevin Scaman code -1
Root Mean Square Layer Normalization Biao Zhang, Rico Sennrich code -1
Universality in Learning from Linear Measurements Ehsan Abbasi, Fariborz Salehi, Babak Hassibi code -1
Planning in entropy-regularized Markov decision processes and games JeanBastien Grill, Omar Darwiche Domingues, Pierre Ménard, Rémi Munos, Michal Valko code -1
Exponentially convergent stochastic k-PCA without variance reduction Cheng Tang code -1
R2D2: Reliable and Repeatable Detector and Descriptor Jérôme Revaud, César Roberto de Souza, Martin Humenberger, Philippe Weinzaepfel code -1
Selective Sampling-based Scalable Sparse Subspace Clustering Shin Matsushima, Maria Brbic code -1
A General Framework for Symmetric Property Estimation Moses Charikar, Kirankumar Shiragur, Aaron Sidford code -1
Structured Variational Inference in Continuous Cox Process Models Virginia Aglietti, Edwin V. Bonilla, Theodoros Damoulas, Sally Cripps code -1
Generalization of Reinforcement Learners with Working and Episodic Memory Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adrià Puigdomènech Badia, Gavin Buttimore, Charlie Deck, Joel Z. Leibo, Charles Blundell code -1
Distribution Learning of a Random Spatial Field with a Location-Unaware Mobile Sensor Meera Pai, Animesh Kumar code -1
Hindsight Credit Assignment Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Gheshlaghi Azar, Bilal Piot, Nicolas Heess, Hado van Hasselt, Gregory Wayne, Satinder Singh, Doina Precup, Rémi Munos code -1
Efficient Identification in Linear Structural Causal Models with Instrumental Cutsets Daniel Kumor, Bryant Chen, Elias Bareinboim code -1
Kernelized Bayesian Softmax for Text Generation Ning Miao, Hao Zhou, Chengqi Zhao, Wenxian Shi, Lei Li code -1
When to Trust Your Model: Model-Based Policy Optimization Michael Janner, Justin Fu, Marvin Zhang, Sergey Levine code -1
Correlation Clustering with Adaptive Similarity Queries Marco Bressan, Nicolò CesaBianchi, Andrea Paudice, Fabio Vitale code -1
Control What You Can: Intrinsically Motivated Task-Planning Agent Sebastian Blaes, Marin Vlastelica Pogancic, JiaJie Zhu, Georg Martius code -1
Selecting causal brain features with a single conditional independence test per feature AtalantiAnastasia Mastakouri, Bernhard Schölkopf, Dominik Janzing code -1
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, Yee Whye Teh code -1
A Generic Acceleration Framework for Stochastic Composite Optimization Andrei Kulunchakov, Julien Mairal code -1
Beating SGD Saturation with Tail-Averaging and Minibatching Nicole Mücke, Gergely Neu, Lorenzo Rosasco code -1
Random Quadratic Forms with Dependence: Applications to Restricted Isometry and Beyond Arindam Banerjee, Qilong Gu, Vidyashankar Sivakumar, Zhiwei Steven Wu code -1
Continuous-time Models for Stochastic Optimization Algorithms Antonio Orvieto, Aurélien Lucchi code -1
Curriculum-guided Hindsight Experience Replay Meng Fang, Tianyi Zhou, Yali Du, Lei Han, Zhengyou Zhang code -1
Implicit Semantic Data Augmentation for Deep Networks Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Gao Huang, Cheng Wu code -1
MetaInit: Initializing learning by learning to initialize Yann N. Dauphin, Samuel S. Schoenholz code -1
Scalable Deep Generative Relational Model with High-Order Node Dependence Xuhui Fan, Bin Li, Caoyuan Li, Scott A. Sisson, Ling Chen code -1
Random Path Selection for Continual Learning Jathushan Rajasegaran, Munawar Hayat, Salman H. Khan, Fahad Shahbaz Khan, Ling Shao code -1
Efficient Algorithms for Smooth Minimax Optimization Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, Sewoong Oh code -1
Shadowing Properties of Optimization Algorithms Antonio Orvieto, Aurélien Lucchi code -1
Causal Regularization Dominik Janzing code -1
Learning Hawkes Processes from a handful of events Farnood Salehi, William Trouleau, Matthias Grossglauser, Patrick Thiran code -1
Unsupervised Object Segmentation by Redrawing Mickaël Chen, Thierry Artières, Ludovic Denoyer code -1
Regret Bounds for Learning State Representations in Reinforcement Learning Ronald Ortner, Matteo Pirotta, Alessandro Lazaric, Ronan Fruit, OdalricAmbrym Maillard code -1
Band-Limited Gaussian Processes: The Sinc Kernel Felipe A. Tobar code -1
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil code -1
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning Valerio Perrone, Huibin Shen code -1
Streaming Bayesian Inference for Crowdsourced Classification Edoardo Manino, Long TranThanh, Nicholas R. Jennings code -1
Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation Ruibo Tu, Kun Zhang, Bo C. Bertilson, Hedvig Kjellström, Cheng Zhang code -1
Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs Jonas Kubilius, Martin Schrimpf, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Kohitij Kar, Pouya Bashivan, Jonathan PrescottRoy, Kailyn Schmidt, Aran Nayebi, Daniel Bear, Daniel L. K. Yamins, James J. DiCarlo code -1
k-Means Clustering of Lines for Big Data Yair Marom, Dan Feldman code -1
Random Projections and Sampling Algorithms for Clustering of High-Dimensional Polygonal Curves Stefan Meintrup, Alexander Munteanu, Dennis Rohde code -1
Recurrent Space-time Graph Neural Networks Andrei Liviu Nicolicioiu, Iulia Duta, Marius Leordeanu code -1
Uncertainty on Asynchronous Time Event Prediction Bertrand Charpentier, Marin Bilos, Stephan Günnemann code -1
Accurate, reliable and fast robustness evaluation Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, Matthias Bethge code -1
Sparse High-Dimensional Isotonic Regression David Gamarnik, Julia Gaudio code -1
Triad Constraints for Learning Causal Structure of Latent Variables Ruichu Cai, Feng Xie, Clark Glymour, Zhifeng Hao, Kun Zhang code -1
On the Inductive Bias of Neural Tangent Kernels Alberto Bietti, Julien Mairal code -1
Cross-Domain Transferability of Adversarial Perturbations Muzammal Naseer, Salman H. Khan, Muhammad Haris Khan, Fahad Shahbaz Khan, Fatih Porikli code -1
Shallow RNN: Accurate Time-series Classification on Resource Constrained Devices Don Kurian Dennis, Durmus Alp Emre Acar, Vikram Mandikal, Vinu Sankar Sadasivan, Venkatesh Saligrama, Harsha Vardhan Simhadri, Prateek Jain code -1
Kernel quadrature with DPPs Ayoub Belhadji, Rémi Bardenet, Pierre Chainais code -1
REM: From Structural Entropy to Community Structure Deception Yiwei Liu, Jiamou Liu, Zijian Zhang, Liehuang Zhu, Angsheng Li code -1
Sim2real transfer learning for 3D human pose estimation: motion to the rescue Carl Doersch, Andrew Zisserman code -1
Self-Supervised Deep Learning on Point Clouds by Reconstructing Space Jonathan Sauder, Bjarne Sievers code -1
Piecewise Strong Convexity of Neural Networks Tristan Milne code -1
Minimum Stein Discrepancy Estimators Alessandro Barp, FrançoisXavier Briol, Andrew B. Duncan, Mark A. Girolami, Lester W. Mackey code -1
Fast and Furious Learning in Zero-Sum Games: Vanishing Regret with Non-Vanishing Step Sizes James P. Bailey, Georgios Piliouras code -1
Generalization Bounds for Neural Networks via Approximate Description Length Amit Daniely, Elad Granot code -1
Provably robust boosted decision stumps and trees against adversarial attacks Maksym Andriushchenko, Matthias Hein code -1
Convergence of Adversarial Training in Overparametrized Neural Networks Ruiqi Gao, Tianle Cai, Haochuan Li, ChoJui Hsieh, Liwei Wang, Jason D. Lee code -1
A Composable Specification Language for Reinforcement Learning Tasks Kishor Jothimurugan, Rajeev Alur, Osbert Bastani code -1
The Option Keyboard: Combining Skills in Reinforcement Learning André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel Toyama, Jonathan J. Hunt, Shibl Mourad, David Silver, Doina Precup code -1
Unified Language Model Pre-training for Natural Language Understanding and Generation Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, HsiaoWuen Hon code -1
Learning to Correlate in Multi-Player General-Sum Sequential Games Andrea Celli, Alberto Marchesi, Tommaso Bianchi, Nicola Gatti code -1
Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match Amin Karbasi, Hamed Hassani, Aryan Mokhtari, Zebang Shen code -1
Generative Well-intentioned Networks Justin Cosentino, Jun Zhu code -1
Online-Within-Online Meta-Learning Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil code -1
Learning step sizes for unfolded sparse coding Pierre Ablin, Thomas Moreau, Mathurin Massias, Alexandre Gramfort code -1
Biases for Emergent Communication in Multi-agent Reinforcement Learning Tom Eccles, Yoram Bachrach, Guy Lever, Angeliki Lazaridou, Thore Graepel code -1
Episodic Memory in Lifelong Language Learning Cyprien de Masson d'Autume, Sebastian Ruder, Lingpeng Kong, Dani Yogatama code -1
A Simple Baseline for Bayesian Uncertainty in Deep Learning Wesley J. Maddox, Pavel Izmailov, Timur Garipov, Dmitry P. Vetrov, Andrew Gordon Wilson code -1
Communication-efficient Distributed SGD with Sketching Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, Raman Arora code -1
Modeling Conceptual Understanding in Image Reference Games Rodolfo Corona, Stephan Alaniz, Zeynep Akata code -1
Kalman Filter, Sensor Fusion, and Constrained Regression: Equivalences and Insights Maria Jahja, David C. Farrow, Roni Rosenfeld, Ryan J. Tibshirani code -1
Near Neighbor: Who is the Fairest of Them All? Sariel HarPeled, Sepideh Mahabadi code -1
Outlier-robust estimation of a sparse linear model using \ell_1-penalized Huber's M-estimator Arnak S. Dalalyan, Philip Thompson code -1
Learning nonlinear level sets for dimensionality reduction in function approximation Guannan Zhang, Jiaxin Zhang, Jacob D. Hinkle code -1
Assessing Social and Intersectional Biases in Contextualized Word Representations Yi Chern Tan, L. Elisa Celis code -1
Online Convex Matrix Factorization with Representative Regions Jianhao Peng, Olgica Milenkovic, Abhishek Agarwal code -1
Self-supervised GAN: Analysis and Improvement with Multi-class Minimax Game NgocTrung Tran, VietHung Tran, NgocBao Nguyen, Linxiao Yang, NgaiMan Cheung code -1
Extreme Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon Search with 50M Products Tharun Medini, Qixuan Huang, Yiqiu Wang, Vijai Mohan, Anshumali Shrivastava code -1
The continuous Bernoulli: fixing a pervasive error in variational autoencoders Gabriel LoaizaGanem, John P. Cunningham code -1
Privacy Amplification by Mixing and Diffusion Mechanisms Borja Balle, Gilles Barthe, Marco Gaboardi, Joseph Geumlek code -1
Variance Reduction in Bipartite Experiments through Correlation Clustering Jean PougetAbadie, Kevin Aydin, Warren Schudy, Kay Brodersen, Vahab S. Mirrokni code -1
Gossip-based Actor-Learner Architectures for Deep Reinforcement Learning Mahmoud Assran, Joshua Romoff, Nicolas Ballas, Joelle Pineau, Mike Rabbat code -1
Metalearned Neural Memory Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, Adam Trischler code -1
Learning Multiple Markov Chains via Adaptive Allocation Mohammad Sadegh Talebi, OdalricAmbrym Maillard code -1
Diffusion Improves Graph Learning Johannes Klicpera, Stefan Weißenberger, Stephan Günnemann code -1
Deep Random Splines for Point Process Intensity Estimation of Neural Population Data Gabriel LoaizaGanem, Sean Perkins, Karen Schroeder, Mark M. Churchland, John P. Cunningham code -1
Variational Bayes under Model Misspecification Yixin Wang, David M. Blei code -1
Global Convergence of Gradient Descent for Deep Linear Residual Networks Lei Wu, Qingcan Wang, Chao Ma code -1
On Differentially Private Graph Sparsification and Applications Raman Arora, Jalaj Upadhyay code -1
Manifold denoising by Nonlinear Robust Principal Component Analysis He Lyu, Ningyu Sha, Shuyang Qin, Ming Yan, Yuying Xie, Rongrong Wang code -1
Near-Optimal Reinforcement Learning in Dynamic Treatment Regimes Junzhe Zhang, Elias Bareinboim code -1
ODE2VAE: Deep generative second order ODEs with Bayesian neural networks Çagatay Yildiz, Markus Heinonen, Harri Lähdesmäki code -1
Optimal Sampling and Clustering in the Stochastic Block Model SeYoung Yun, Alexandre Proutière code -1
Recurrent Kernel Networks Dexiong Chen, Laurent Jacob, Julien Mairal code -1
Cold Case: The Lost MNIST Digits Chhavi Yadav, Léon Bottou code -1
Hierarchical Optimal Transport for Multimodal Distribution Alignment John Lee, Max Dabagia, Eva L. Dyer, Christopher Rozell code -1
Exploration via Hindsight Goal Generation Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, Jian Peng code -1
Shaping Belief States with Generative Environment Models for RL Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, Aäron van den Oord code -1
Globally Optimal Learning for Structured Elliptical Losses Yoav Wald, Nofar Noy, Gal Elidan, Ami Wiesel code -1
Object landmark discovery through unsupervised adaptation Enrique Sanchez, Georgios Tzimiropoulos code -1
Specific and Shared Causal Relation Modeling and Mechanism-Based Clustering Biwei Huang, Kun Zhang, Pengtao Xie, Mingming Gong, Eric P. Xing, Clark Glymour code -1
Search-Guided, Lightly-Supervised Training of Structured Prediction Energy Networks Amirmohammad Rooshenas, Dongxu Zhang, Gopal Sharma, Andrew McCallum code -1
Accelerating Rescaled Gradient Descent: Fast Optimization of Smooth Functions Ashia C. Wilson, Lester Mackey, Andre Wibisono code -1
RUDDER: Return Decomposition for Delayed Rewards Jose A. ArjonaMedina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brandstetter, Sepp Hochreiter code -1
Graph Normalizing Flows Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, Kevin Swersky code -1
Explanations can be manipulated and geometry is to blame AnnKathrin Dombrowski, Maximilian Alber, Christopher J. Anders, Marcel Ackermann, KlausRobert Müller, Pan Kessel code -1
Communication trade-offs for Local-SGD with large step size Aymeric Dieuleveut, Kumar Kshitij Patel code -1
Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel, Gauthier Gidel, Eugene Vorontsov, Yoshua Bengio, Guillaume Lajoie code -1
No-Regret Learning in Unknown Games with Correlated Payoffs Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause code -1
Alleviating Label Switching with Optimal Transport Pierre Monteiller, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, Justin M. Solomon, Mikhail Yurochkin code -1
Paraphrase Generation with Latent Bag of Words Yao Fu, Yansong Feng, John P. Cunningham code -1
An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors Joshua Allen, Bolin Ding, Janardhan Kulkarni, Harsha Nori, Olga Ohrimenko, Sergey Yekhanin code -1
Compacting, Picking and Growing for Unforgetting Continual Learning Steven C. Y. Hung, ChengHao Tu, ChengEn Wu, ChienHung Chen, YiMing Chan, ChuSong Chen code -1
Approximating Interactive Human Evaluation with Self-Play for Open-Domain Dialog Systems Asma Ghandeharioun, Judy Hanwen Shen, Natasha Jaques, Craig Ferguson, Noah Jones, Àgata Lapedriza, Rosalind W. Picard code -1
A New Distribution on the Simplex with Auto-Encoding Applications Andrew Stirn, Tony Jebara, David A. Knowles code -1
AutoPrune: Automatic Network Pruning by Regularizing Auxiliary Parameters Xia Xiao, Zigeng Wang, Sanguthevar Rajasekaran code -1
A neurally plausible model learns successor representations in partially observable environments Eszter Vértes, Maneesh Sahani code -1
Learning about an exponential amount of conditional distributions Mohamed Ishmael Belghazi, Maxime Oquab, David LopezPaz code -1
Towards modular and programmable architecture search Renato Negrinho, Matthew R. Gormley, Geoffrey J. Gordon, Darshan Patil, Nghia Le, Daniel Ferreira code -1
Towards Hardware-Aware Tractable Learning of Probabilistic Models Laura Isabel Galindez Olascoaga, Wannes Meert, Nimish Shah, Marian Verhelst, Guy Van den Broeck code -1
On Robustness to Adversarial Examples and Polynomial Optimization Pranjal Awasthi, Abhratanu Dutta, Aravindan Vijayaraghavan code -1
Rand-NSG: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, Rohan Kadekodi code -1
A Solvable High-Dimensional Model of GAN Chuang Wang, Hong Hu, Yue M. Lu code -1
Using Embeddings to Correct for Unobserved Confounding in Networks Victor Veitch, Yixin Wang, David M. Blei code -1
MonoForest framework for tree ensemble analysis Igor Kuralenok, Vasilii Ershov, Igor Labutin code -1
Bayesian Optimization under Heavy-tailed Payoffs Sayak Ray Chowdhury, Aditya Gopalan code -1
Combining Generative and Discriminative Models for Hybrid Inference Victor Garcia Satorras, Max Welling, Zeynep Akata code -1
A Graph Theoretic Additive Approximation of Optimal Transport Nathaniel Lahn, Deepika Mulchandani, Sharath Raghvendra code -1
Adversarial Robustness through Local Linearization Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein Fawzi, Soham De, Robert Stanforth, Pushmeet Kohli code -1
Sampled Softmax with Random Fourier Features Ankit Singh Rawat, Jiecao Chen, Felix X. Yu, Ananda Theertha Suresh, Sanjiv Kumar code -1
Semi-flat minima and saddle points by embedding neural networks to overparameterization Kenji Fukumizu, Shoichiro Yamaguchi, Yohichi Mototake, Mirai Tanaka code -1
Learning Fairness in Multi-Agent Systems Jiechuan Jiang, Zongqing Lu code -1
Primal-Dual Block Generalized Frank-Wolfe Qi Lei, Jiacheng Zhuo, Constantine Caramanis, Inderjit S. Dhillon, Alexandros G. Dimakis code -1
GOT: An Optimal Transport framework for Graph comparison Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, Pascal Frossard code -1
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks Sunil Thulasidasan, Gopinath Chennupati, Jeff A. Bilmes, Tanmoy Bhattacharya, Sarah Michalak code -1
Complexity of Highly Parallel Non-Smooth Convex Optimization Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford code -1
Inverting Deep Generative models, One layer at a time Qi Lei, Ajil Jalal, Inderjit S. Dhillon, Alexandros G. Dimakis code -1
Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization Viet Anh Nguyen, Soroosh ShafieezadehAbadeh, ManChung Yue, Daniel Kuhn, Wolfram Wiesemann code -1
The Implicit Metropolis-Hastings Algorithm Kirill Neklyudov, Evgenii Egorov, Dmitry P. Vetrov code -1
An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints Mehmet Fatih Sahin, Armin Eftekhari, Ahmet Alacaoglu, Fabian Latorre Gómez, Volkan Cevher code -1
Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin, Katja Hofmann code -1
Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin, D. Sculley, Joshua V. Dillon, Jie Ren, Zachary Nado code -1
Accurate Layerwise Interpretable Competence Estimation Vickram Rajendran, William LeVine code -1
A New Perspective on Pool-Based Active Classification and False-Discovery Control Lalit Jain, Kevin G. Jamieson code -1
Defending Neural Backdoors via Generative Distribution Modeling Ximing Qiao, Yukun Yang, Hai Li code -1
Are Sixteen Heads Really Better than One? Paul Michel, Omer Levy, Graham Neubig code -1
Multi-resolution Multi-task Gaussian Processes Oliver Hamelijnck, Theodoros Damoulas, Kangrui Wang, Mark A. Girolami code -1
Variational Bayesian Optimal Experimental Design Adam Foster, Martin Jankowiak, Eli Bingham, Paul Horsfall, Yee Whye Teh, Tom Rainforth, Noah D. Goodman code -1
Universal Approximation of Input-Output Maps by Temporal Convolutional Nets Joshua Hanson, Maxim Raginsky code -1
Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes Matt Jordan, Justin Lewis, Alexandros G. Dimakis code -1
Reinforcement Learning with Convex Constraints Sobhan Miryoosefi, Kianté Brantley, Hal Daumé III, Miroslav Dudík, Robert E. Schapire code -1
User-Specified Local Differential Privacy in Unconstrained Adaptive Online Learning Dirk van der Hoeven code -1
Stochastic Bandits with Context Distributions Johannes Kirschner, Andreas Krause code -1
Inducing brain-relevant bias in natural language processing models Dan Schwartz, Mariya Toneva, Leila Wehbe code -1
Using a Logarithmic Mapping to Enable Lower Discount Factors in Reinforcement Learning Harm van Seijen, Mehdi Fatemi, Arash Tavakoli code -1
Recovering Bandits Ciara PikeBurke, Steffen Grünewälder code -1
Computing Linear Restrictions of Neural Networks Matthew Sotoudeh, Aditya V. Thakur code -1
Learning Positive Functions with Pseudo Mirror Descent Yingxiang Yang, Haoxiang Wang, Negar Kiyavash, Niao He code -1
Correlation Priors for Reinforcement Learning Bastian Alt, Adrian Sosic, Heinz Koeppl code -1
Fast, Provably convergent IRLS Algorithm for p-norm Linear Regression Deeksha Adil, Richard Peng, Sushant Sachdeva code -1
A Similarity-preserving Network Trained on Transformed Images Recapitulates Salient Features of the Fly Motion Detection Circuit Yanis Bahroun, Dmitri B. Chklovskii, Anirvan M. Sengupta code -1
Differentially Private Covariance Estimation Kareem Amin, Travis Dick, Alex Kulesza, Andres Muñoz Medina, Sergei Vassilvitskii code -1
Outlier Detection and Robust PCA Using a Convex Measure of Innovation Mostafa Rahmani, Ping Li code -1
Integrating Markov processes with structural causal modeling enables counterfactual inference in complex systems Robert Osazuwa Ness, Kaushal Paneri, Olga Vitek code -1
Are Disentangled Representations Helpful for Abstract Visual Reasoning? Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, Olivier Bachem code -1
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization Thijs Vogels, Sai Praneeth Karimireddy, Martin Jaggi code -1
Stochastic Frank-Wolfe for Composite Convex Minimization Francesco Locatello, Alp Yurtsever, Olivier Fercoq, Volkan Cevher code -1
Constraint-based Causal Structure Learning with Consistent Separating Sets Honghao Li, Vincent Cabeli, Nadir Sella, Hervé Isambert code -1
Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis David G. Clark, Jesse Livezey, Kristofer E. Bouchard code -1
Sample Efficient Active Learning of Causal Trees Kristjan H. Greenewald, Dmitriy Katz, Karthikeyan Shanmugam, Sara Magliacane, Murat Kocaoglu, Enric Boix Adserà, Guy Bresler code -1
Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection Junran Peng, Ming Sun, Zhaoxiang Zhang, Tieniu Tan, Junjie Yan code -1
Robust Attribution Regularization Jiefeng Chen, Xi Wu, Vaibhav Rastogi, Yingyu Liang, Somesh Jha code -1
Computational Mirrors: Blind Inverse Light Transport by Deep Matrix Factorization Miika Aittala, Prafull Sharma, Lukas Murmann, Adam B. Yedidia, Gregory W. Wornell, Bill Freeman, Frédo Durand code -1
When to use parametric models in reinforcement learning? Hado van Hasselt, Matteo Hessel, John Aslanides code -1
General E(2)-Equivariant Steerable CNNs Maurice Weiler, Gabriele Cesa code -1
Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions Murat Kocaoglu, Amin Jaber, Karthikeyan Shanmugam, Elias Bareinboim code -1
Structure Learning with Side Information: Sample Complexity Saurabh Sihag, Ali Tajer code -1
Untangling in Invariant Speech Recognition Cory Stephenson, Jenelle Feather, Suchismita Padhy, Oguz H. Elibol, Hanlin Tang, Josh H. McDermott, SueYeon Chung code -1
Flexible information routing in neural populations through stochastic comodulation Caroline Haimerl, Cristina Savin, Eero P. Simoncelli code -1
Generalization Bounds in the Predict-then-Optimize Framework Othman El Balghiti, Adam N. Elmachtoub, Paul Grigas, Ambuj Tewari code -1
Categorized Bandits Matthieu Jedor, Vianney Perchet, Jonathan Louëdec code -1
Worst-Case Regret Bounds for Exploration via Randomized Value Functions Daniel Russo code -1
Efficient characterization of electrically evoked responses for neural interfaces Nishal P. Shah, Sasidhar Madugula, Pawel Hottowy, Alexander Sher, Alan M. Litke, Liam Paninski, E. J. Chichilnisky code -1
Differentially Private Distributed Data Summarization under Covariate Shift Kanthi K. Sarpatwar, Karthikeyan Shanmugam, Venkata Sitaramagiridharganesh Ganapavarapu, Ashish Jagmohan, Roman Vaculín code -1
Hamiltonian descent for composite objectives Brendan O'Donoghue, Chris J. Maddison code -1
Implicit Regularization of Accelerated Methods in Hilbert Spaces Nicolò Pagliana, Lorenzo Rosasco code -1
Non-Asymptotic Pure Exploration by Solving Games Rémy Degenne, Wouter M. Koolen, Pierre Ménard code -1
Implicit Posterior Variational Inference for Deep Gaussian Processes Haibin Yu, Yizhou Chen, Bryan Kian Hsiang Low, Patrick Jaillet, Zhongxiang Dai code -1
Deep Multi-State Dynamic Recurrent Neural Networks Operating on Wavelet Based Neural Features for Robust Brain Machine Interfaces Benyamin Allahgholizadeh Haghi, Spencer S. Kellis, Sahil Shah, Maitreyi Ashok, Luke Bashford, Daniel Kramer, Brian C. Lee, Charles Liu, Richard A. Andersen, Azita Emami code -1
Censored Semi-Bandits: A Framework for Resource Allocation with Censored Feedback Arun Verma, Manjesh Kumar Hanawal, Arun Rajkumar, Raman Sankaran code -1
Cormorant: Covariant Molecular Neural Networks Brandon M. Anderson, TruongSon Hy, Risi Kondor code -1
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness Andrey Malinin, Mark J. F. Gales code -1
Reflection Separation using a Pair of Unpolarized and Polarized Images Youwei Lyu, Zhaopeng Cui, Si Li, Marc Pollefeys, Boxin Shi code -1
Policy Poisoning in Batch Reinforcement Learning and Control Yuzhe Ma, Xuezhou Zhang, Wen Sun, Jerry Zhu code -1
Low-Complexity Nonparametric Bayesian Online Prediction with Universal Guarantees Alix Lhéritier, Frédéric Cazals code -1
Pure Exploration with Multiple Correct Answers Rémy Degenne, Wouter M. Koolen code -1
Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu, Rong Ge, Sanjeev Arora code -1
On the Fairness of Disentangled Representations Francesco Locatello, Gabriele Abbati, Thomas Rainforth, Stefan Bauer, Bernhard Schölkopf, Olivier Bachem code -1
Compiler Auto-Vectorization with Imitation Learning Charith Mendis, Cambridge Yang, Yewen Pu, Saman P. Amarasinghe, Michael Carbin code -1
A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation Runzhe Yang, Xingyuan Sun, Karthik Narasimhan code -1
Exact Gaussian Processes on a Million Data Points Ke Alexander Wang, Geoff Pleiss, Jacob R. Gardner, Stephen Tyree, Kilian Q. Weinberger, Andrew Gordon Wilson code -1
Bayesian Layers: A Module for Neural Network Uncertainty Dustin Tran, Mike Dusenberry, Mark van der Wilk, Danijar Hafner code -1
Learning Compositional Neural Programs with Recursive Tree Search and Planning Thomas Pierrot, Guillaume Ligner, Scott E. Reed, Olivier Sigaud, Nicolas Perrin, Alexandre Laterre, David Kas, Karim Beguir, Nando de Freitas code -1
Nonparametric Contextual Bandits in Metric Spaces with Unknown Metric Nirandika Wanigasekara, Christina Lee Yu code -1
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification and Local Computations Debraj Basu, Deepesh Data, Can Karakus, Suhas N. Diggavi code -1
Likelihood Ratios for Out-of-Distribution Detection Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. DePristo, Joshua V. Dillon, Balaji Lakshminarayanan code -1
Discrete Flows: Invertible Generative Models of Discrete Data Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, Ben Poole code -1
A Self Validation Network for Object-Level Human Attention Estimation Zehua Zhang, Chen Yu, David J. Crandall code -1
Model Selection for Contextual Bandits Dylan J. Foster, Akshay Krishnamurthy, Haipeng Luo code -1
Sliced Gromov-Wasserstein Titouan Vayer, Rémi Flamary, Nicolas Courty, Romain Tavenard, Laetitia Chapel code -1
Towards Practical Alternating Least-Squares for CCA Zhiqiang Xu, Ping Li code -1
Deep Leakage from Gradients Ligeng Zhu, Zhijian Liu, Song Han code -1
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness Fanny Yang, Zuowen Wang, Christina HeinzeDeml code -1
Algorithm-Dependent Generalization Bounds for Overparameterized Deep Residual Networks Spencer Frei, Yuan Cao, Quanquan Gu code -1
Value Function in Frequency Domain and the Characteristic Value Iteration Algorithm Amirmassoud Farahmand code -1
Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model Wenbo Gong, Sebastian Tschiatschek, Sebastian Nowozin, Richard E. Turner, José Miguel HernándezLobato, Cheng Zhang code -1
Algorithmic Guarantees for Inverse Imaging with Untrained Network Priors Gauri Jagatap, Chinmay Hegde code -1
Planning with Goal-Conditioned Policies Soroush Nasiriany, Vitchyr Pong, Steven Lin, Sergey Levine code -1
Don't take it lightly: Phasing optical random projections with unknown operators Sidharth Gupta, Rémi Gribonval, Laurent Daudet, Ivan Dokmanic code -1
Generating Diverse High-Fidelity Images with VQ-VAE-2 Ali Razavi, Aäron van den Oord, Oriol Vinyals code -1
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs Pedro Mercado, Francesco Tudisco, Matthias Hein code -1
Online Optimal Control with Linear Dynamics and Predictions: Algorithms and Regret Analysis Yingying Li, Xin Chen, Na Li code -1
Missing Not at Random in Matrix Completion: The Effectiveness of Estimating Missingness Probabilities Under a Low Nuclear Norm Assumption Wei Ma, George H. Chen code -1
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, Aaron C. Courville code -1
Offline Contextual Bandits with High Probability Fairness Guarantees Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy Brun, Emma Brunskill, Philip S. Thomas code -1
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D. Lee, Meisam Razaviyayn code -1
Semantic-Guided Multi-Attention Localization for Zero-Shot Learning Yizhe Zhu, Jianwen Xie, Zhiqiang Tang, Xi Peng, Ahmed Elgammal code -1
Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain) Mariya Toneva, Leila Wehbe code -1
Function-Space Distributions over Kernels Gregory W. Benton, Wesley J. Maddox, Jayson P. Salkey, Julio Albinati, Andrew Gordon Wilson code -1
The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning Rate Procedure For Least Squares Rong Ge, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli code -1
Compositional Plan Vectors Coline Devin, Daniel Geng, Pieter Abbeel, Trevor Darrell, Sergey Levine code -1
Locally Private Learning without Interaction Requires Separation Amit Daniely, Vitaly Feldman code -1
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences Ehsan Amid, Manfred K. Warmuth, Rohan Anil, Tomer Koren code -1
Computational Separations between Sampling and Optimization Kunal Talwar code -1
Surfing: Iterative Optimization Over Incrementally Trained Deep Networks Ganlin Song, Zhou Fan, John Lafferty code -1
Learning to Optimize in Swarms Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen code -1
On Human-Aligned Risk Minimization Liu Leqi, Adarsh Prasad, Pradeep Ravikumar code -1
Semi-Parametric Efficient Policy Learning with Continuous Actions Victor Chernozhukov, Mert Demirer, Greg Lewis, Vasilis Syrgkanis code -1
Multi-task Learning for Aggregated Data using Gaussian Processes Fariba Yousefi, Michael Thomas Smith, Mauricio A. Álvarez code -1
Minimal Variance Sampling in Stochastic Gradient Boosting Bulat Ibragimov, Gleb Gusev code -1
Beyond the Single Neuron Convex Barrier for Neural Network Certification Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, Martin T. Vechev code -1
An Algorithm to Learn Polytree Networks with Hidden Nodes Firoozeh Sepehr, Donatello Materassi code -1
Efficiently Learning Fourier Sparse Set Functions Andisheh Amrollahi, Amir Zandieh, Michael Kapralov, Andreas Krause code -1
Projected Stein Variational Newton: A Fast and Scalable Bayesian Inference Method in High Dimensions Peng Chen, Keyi Wu, Joshua Chen, Tom O'LearyRoseberry, Omar Ghattas code -1
Invariance and identifiability issues for word embeddings Rachel Carrington, Karthik Bharath, Simon Preston code -1
Generalization Error Analysis of Quantized Compressive Learning Xiaoyun Li, Ping Li code -1
Multi-Criteria Dimensionality Reduction with Applications to Fairness Uthaipon Tantipongpipat, Samira Samadi, Mohit Singh, Jamie Morgenstern, Santosh S. Vempala code -1
Efficient Rematerialization for Deep Networks Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, Joshua R. Wang code -1
Mo' States Mo' Problems: Emergency Stop Mechanisms from Observation Samuel K. Ainsworth, Matt Barnes, Siddhartha S. Srinivasa code -1
Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, Greg Lewis code -1
Understanding Sparse JL for Feature Hashing Meena Jagadeesan code -1
Text-Based Interactive Recommendation via Constraint-Augmented Reinforcement Learning Ruiyi Zhang, Tong Yu, Yilin Shen, Hongxia Jin, Changyou Chen code -1
Flexible Modeling of Diversity with Strongly Log-Concave Distributions Joshua Robinson, Suvrit Sra, Stefanie Jegelka code -1
Momentum-Based Variance Reduction in Non-Convex SGD Ashok Cutkosky, Francesco Orabona code -1
Search on the Replay Buffer: Bridging Planning and Reinforcement Learning Ben Eysenbach, Ruslan Salakhutdinov, Sergey Levine code -1
Can Unconditional Language Models Recover Arbitrary Sentences? Nishant Subramani, Samuel R. Bowman, Kyunghyun Cho code -1
Group Retention when Using Machine Learning in Sequential Decision Making: the Interplay between User Dynamics and Fairness Xueru Zhang, Mohammadmahdi Khaliligarekani, Cem Tekin, Mingyan Liu code -1
Faster width-dependent algorithm for mixed packing and covering LPs Digvijay Boob, Saurabh Sawlani, Di Wang code -1
Flattening a Hierarchical Clustering through Active Learning Fabio Vitale, Anand Rajagopalan, Claudio Gentile code -1
DeepWave: A Recurrent Neural-Network for Real-Time Acoustic Imaging Matthieu Simeoni, Sepand Kashani, Paul Hurley, Martin Vetterli code -1
Certifying Geometric Robustness of Neural Networks Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, Martin T. Vechev code -1
Goal-conditioned Imitation Learning Yiming Ding, Carlos Florensa, Pieter Abbeel, Mariano Phielipp code -1
Robust exploration in linear quadratic reinforcement learning Jack Umenberger, Mina Ferizbegovic, Thomas B. Schön, Håkan Hjalmarsson code -1
DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, Daisy Zhe Wang code -1
Kernel Truncated Randomized Ridge Regression: Optimal Rates and Low Noise Acceleration KwangSung Jun, Ashok Cutkosky, Francesco Orabona code -1
Input-Output Equivalence of Unitary and Contractive RNNs Melikasadat Emami, Mojtaba SahraeeArdakan, Sundeep Rangan, Alyson K. Fletcher code -1
Hamiltonian Neural Networks Samuel Greydanus, Misko Dzamba, Jason Yosinski code -1
Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B. Grosse, JörnHenrik Jacobsen code -1
Structured and Deep Similarity Matching via Structured and Deep Hebbian Networks Dina Obeid, Hugo Ramambason, Cengiz Pehlevan code -1
Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology Nima Dehmamy, AlbertLászló Barabási, Rose Yu code -1
Multiple Futures Prediction Yichuan Charlie Tang, Ruslan Salakhutdinov code -1
Explicitly disentangling image content from translation and rotation with spatial-VAE Tristan Bepler, Ellen D. Zhong, Kotaro Kelley, Edward Brignole, Bonnie Berger code -1
Power analysis of knockoff filters for correlated designs Jingbo Liu, Philippe Rigollet code -1
A Kernel Loss for Solving the Bellman Equation Yihao Feng, Lihong Li, Qiang Liu code -1
Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing Jonas Mueller, Vasilis Syrgkanis, Matt Taddy code -1
Differential Privacy Has Disparate Impact on Model Accuracy Eugene Bagdasaryan, Omid Poursaeed, Vitaly Shmatikov code -1
Riemannian batch normalization for SPD neural networks Daniel A. Brooks, Olivier Schwander, Frédéric Barbaresco, JeanYves Schneider, Matthieu Cord code -1
Neural Taskonomy: Inferring the Similarity of Task-Derived Representations from Brain Activity Aria Wang, Michael J. Tarr, Leila Wehbe code -1
Stacked Capsule Autoencoders Adam R. Kosiorek, Sara Sabour, Yee Whye Teh, Geoffrey E. Hinton code -1
Learning Reward Machines for Partially Observable Reinforcement Learning Rodrigo Toro Icarte, Ethan Waldie, Toryn Q. Klassen, Richard Anthony Valenzano, Margarita P. Castro, Sheila A. McIlraith code -1
Learning Representations by Maximizing Mutual Information Across Views Philip Bachman, R. Devon Hjelm, William Buchwalter code -1
Amortized Bethe Free Energy Minimization for Learning MRFs Sam Wiseman, Yoon Kim code -1
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity Chulhee Yun, Suvrit Sra, Ali Jadbabaie code -1
Legendre Memory Units: Continuous-Time Representation in Recurrent Neural Networks Aaron Voelker, Ivana Kajic, Chris Eliasmith code -1
Exact Combinatorial Optimization with Graph Convolutional Neural Networks Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, Andrea Lodi code -1
Fast structure learning with modular regularization Greg Ver Steeg, Hrayr Harutyunyan, Daniel Moyer, Aram Galstyan code -1
Wasserstein Dependency Measure for Representation Learning Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aäron van den Oord, Sergey Levine, Pierre Sermanet code -1
TAB-VCR: Tags and Attributes based VCR Baselines Jingxiang Lin, Unnat Jain, Alexander G. Schwing code -1
Universality and individuality in neural dynamics across large populations of recurrent networks Niru Maheswaranathan, Alex H. Williams, Matthew D. Golub, Surya Ganguli, David Sussillo code -1
End-to-End Learning on 3D Protein Structure for Interface Prediction Raphael J. L. Townshend, Rishi Bedi, Patricia Suriana, Ron O. Dror code -1
A Family of Robust Stochastic Operators for Reinforcement Learning Yingdong Lu, Mark S. Squillante, Chai Wah Wu code -1
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, Dawn Song code -1
Inherent Tradeoffs in Learning Fair Representations Han Zhao, Geoffrey J. Gordon code -1
Are deep ResNets provably better than linear predictors? Chulhee Yun, Suvrit Sra, Ali Jadbabaie code -1
Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics Niru Maheswaranathan, Alex H. Williams, Matthew D. Golub, Surya Ganguli, David Sussillo code -1
BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos Eleanor Batty, Matthew R. Whiteway, Shreya Saxena, Dan Biderman, Taiga Abe, Simon Musall, Winthrop Gillis, Jeffrey E. Markowitz, Anne Churchland, John P. Cunningham, Sandeep R. Datta, Scott W. Linderman, Liam Paninski code -1
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models Yuge Shi, Siddharth Narayanaswamy, Brooks Paige, Philip H. S. Torr code -1
Gradient-based Adaptive Markov Chain Monte Carlo Michalis K. Titsias, Petros Dellaportas code -1
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset Muhammad Waleed Gondal, Manuel Wuthrich, Djordje Miladinovic, Francesco Locatello, Martin Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer code -1
Imitation-Projected Programmatic Reinforcement Learning Abhinav Verma, Hoang Minh Le, Yisong Yue, Swarat Chaudhuri code -1
Learning Data Manipulation for Augmentation and Weighting Zhiting Hu, Bowen Tan, Ruslan Salakhutdinov, Tom M. Mitchell, Eric P. Xing code -1
Exploring Algorithmic Fairness in Robust Graph Covering Problems Aida Rahmattalabi, Phebe Vayanos, Anthony Fulginiti, Eric Rice, Bryan Wilder, Amulya Yadav, Milind Tambe code -1
Abstraction based Output Range Analysis for Neural Networks Pavithra Prabhakar, Zahra Rahimi Afzal code -1
Space and Time Efficient Kernel Density Estimation in High Dimensions Arturs Backurs, Piotr Indyk, Tal Wagner code -1
PIDForest: Anomaly Detection via Partial Identification Parikshit Gopalan, Vatsal Sharan, Udi Wieder code -1
Generative Models for Graph-Based Protein Design John Ingraham, Vikas K. Garg, Regina Barzilay, Tommi S. Jaakkola code -1
The Geometry of Deep Networks: Power Diagram Subdivision Randall Balestriero, Romain Cosentino, Behnaam Aazhang, Richard G. Baraniuk code -1
Approximate Feature Collisions in Neural Nets Ke Li, Tianhao Zhang, Jitendra Malik code -1
Ease-of-Teaching and Language Structure from Emergent Communication Fushan Li, Michael Bowling code -1
Generalization in multitask deep neural classifiers: a statistical physics approach Anthony Ndirango, Tyler Lee code -1
Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation Viet Anh Nguyen, Soroosh ShafieezadehAbadeh, ManChung Yue, Daniel Kuhn, Wolfram Wiesemann code -1
On Relating Explanations and Adversarial Examples Alexey Ignatiev, Nina Narodytska, João MarquesSilva code -1
On the equivalence between graph isomorphism testing and function approximation with GNNs Zhengdao Chen, Soledad Villar, Lei Chen, Joan Bruna code -1
Surround Modulation: A Bio-inspired Connectivity Structure for Convolutional Neural Networks Hosein Hasani, Mahdieh Soleymani, Hamid Aghajan code -1
Self-attention with Functional Time Representation Learning Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, Kannan Achan code -1
Re-randomized Densification for One Permutation Hashing and Bin-wise Consistent Weighted Sampling Ping Li, Xiaoyun Li, CunHui Zhang code -1
Enabling hyperparameter optimization in sequential autoencoders for spiking neural data Mohammad Reza Keshtkaran, Chethan Pandarinath code -1
Mixtape: Breaking the Softmax Bottleneck Efficiently Zhilin Yang, Thang Luong, Ruslan Salakhutdinov, Quoc V. Le code -1