forked from justKidrauhl/DDC
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathConvDEC.py
49 lines (35 loc) · 1.94 KB
/
ConvDEC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from keras.layers import Conv2D, Conv2DTranspose, Dense, Flatten, Reshape, InputLayer
from keras.models import Sequential, Model
from keras.initializers import VarianceScaling
from keras.preprocessing.image import ImageDataGenerator
from DEC import DEC
def CAE(input_shape=(28, 28, 1), filters=[32, 64, 128, 10]):
model = Sequential()
if input_shape[0] % 8 == 0:
pad3 = 'same'
else:
pad3 = 'valid'
init = VarianceScaling(scale=1. / 3., mode='fan_in', distribution='uniform')
model.add(InputLayer(input_shape))
model.add(Conv2D(filters[0], 5, strides=2, padding='same', activation='relu', name='conv1'))
model.add(Conv2D(filters[1], 5, strides=2, padding='same', activation='relu', name='conv2'))
model.add(Conv2D(filters[2], 3, strides=2, padding=pad3, activation='relu', name='conv3'))
model.add(Flatten())
model.add(Dense(units=filters[3], name='embedding'))
model.add(Dense(units=filters[2]*int(input_shape[0]/8)*int(input_shape[0]/8), activation='relu'))
model.add(Reshape((int(input_shape[0]/8), int(input_shape[0]/8), filters[2])))
model.add(Conv2DTranspose(filters[1], 3, strides=2, padding=pad3, activation='relu', name='deconv3'))
model.add(Conv2DTranspose(filters[0], 5, strides=2, padding='same', activation='relu', name='deconv2'))
model.add(Conv2DTranspose(input_shape[2], 5, strides=2, padding='same', name='deconv1'))
encoder = Model(inputs=model.input, outputs=model.get_layer('embedding').output)
return model, encoder
class ConvDEC(DEC):
def __init__(self,
input_shape,
filters=[32, 64, 128, 10],
init='glorot_uniform'):
# self.n_clusters = n_clusters
self.input_shape = input_shape
self.datagen = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, rotation_range=10)
self.datagenx = ImageDataGenerator()
self.autoencoder, self.encoder = CAE(input_shape, filters)