forked from Yishun99/KB-QA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimilarity.py
61 lines (49 loc) · 2.53 KB
/
similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import jieba.posseg
import os
import codecs
import pickle
from gensim import corpora, models, similarities
from data_util import tokenizer
def generate_dic_and_corpus(knowledge_file, file_name, stop_words):
knowledge_texts = tokenizer(knowledge_file, stop_words)
train_texts = tokenizer(file_name, stop_words)
dictionary = corpora.Dictionary(knowledge_texts + train_texts) # dictionary of knowledge and train data
dictionary.save(os.path.join('tmp/dictionary.dict'))
corpus = [dictionary.doc2bow(text) for text in knowledge_texts] # corpus of knowledge
corpora.MmCorpus.serialize('tmp/knowledge_corpus.mm', corpus)
def topk_sim_ix(file_name, stop_words, k):
sim_path = "tmp/" + file_name[5:-4]
if os.path.exists(sim_path):
with open(sim_path, "rb") as f:
sim_ixs = pickle.load(f)
return sim_ixs
# load dictionary and corpus
dictionary = corpora.Dictionary.load("tmp/dictionary.dict") # dictionary of knowledge and train data
corpus = corpora.MmCorpus("tmp/knowledge_corpus.mm") # corpus of knowledge
# build Latent Semantic Indexing model
lsi = models.LsiModel(corpus, id2word=dictionary, num_topics=10) # initialize an LSI transformation
# similarity
index = similarities.MatrixSimilarity(lsi[corpus]) # transform corpus to LSI space and index it
sim_ixs = [] # topk related knowledge index of each question
with open(file_name) as f:
tmp = [] # background and question
for i, line in enumerate(f):
if i % 6 == 0:
tmp.extend([token for token, _ in jieba.posseg.cut(line.rstrip()) if token not in stop_words])
if i % 6 == 1:
tmp.extend([token for token, _ in jieba.posseg.cut(line.rstrip()) if token not in stop_words])
vec_lsi = lsi[dictionary.doc2bow(tmp)] # convert the query to LSI space
sim_ix = index[vec_lsi] # perform a similarity query against the corpus
sim_ix = [i for i, j in sorted(enumerate(sim_ix), key=lambda item: -item[1])[:k]] # topk index
sim_ixs.append(sim_ix)
tmp.clear()
with open(sim_path, "wb") as f:
pickle.dump(sim_ixs, f)
return sim_ixs
# module test
if __name__ == '__main__':
stop_words_ = codecs.open("data/stop_words.txt", 'r', encoding='utf8').readlines()
stop_words_ = [w.strip() for w in stop_words_]
generate_dic_and_corpus("data/knowledge.txt", "data/train.txt", stop_words_)
res = topk_sim_ix("data/train.txt", stop_words_, 5)
print(len(res))