-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
160 lines (132 loc) · 7.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import time
import argparse
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from tqdm import tqdm
from utils.utils import *
from model import Net
# Settings
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--parallel', type=bool, default=False)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument("--angRes", type=int, default=5, help="angular resolution")
parser.add_argument("--upfactor", type=int, default=2, help="upscale factor")
parser.add_argument('--model_name', type=str, default='DistgSSR_2xSR')
parser.add_argument('--trainset_dir', type=str, default='../Data/Train_2xSR_5x5/')
parser.add_argument('--testset_dir', type=str, default='../Data/Test_2xSR_5x5/')
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--lr', type=float, default=2e-4, help='initial learning rate')
parser.add_argument('--n_epochs', type=int, default=50, help='number of epochs to train')
parser.add_argument('--n_steps', type=int, default=15, help='number of epochs to update learning rate')
parser.add_argument('--gamma', type=float, default=0.5, help='learning rate decaying factor')
parser.add_argument('--crop', type=bool, default=True, help="LFs are cropped into patches to save GPU memory")
parser.add_argument("--patchsize", type=int, default=64, help="")
parser.add_argument("--minibatch", type=int, default=12, help="LFs are cropped into patches to save GPU memory")
parser.add_argument('--load_pretrain', type=bool, default=False)
parser.add_argument('--model_path', type=str, default='./log/DistgSSR_2xSR_5x5_epoch_1.pth.tar')
return parser.parse_args()
def train(cfg, train_loader, test_Names, test_loaders):
net = Net(cfg.angRes, cfg.upfactor)
net.to(cfg.device)
cudnn.benchmark = True
epoch_state = 0
if cfg.load_pretrain:
if os.path.isfile(cfg.model_path):
model = torch.load(cfg.model_path, map_location={'cuda:0': cfg.device})
net.load_state_dict(model['state_dict'])
epoch_state = model["epoch"]
else:
print("=> no model found at '{}'".format(cfg.load_model))
if cfg.parallel:
net = torch.nn.DataParallel(net, device_ids=[0, 1])
criterion_Loss = torch.nn.L1Loss().to(cfg.device)
optimizer = torch.optim.Adam([paras for paras in net.parameters() if paras.requires_grad == True], lr=cfg.lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=cfg.n_steps, gamma=cfg.gamma)
scheduler._step_count = epoch_state
loss_epoch = []
loss_list = []
for idx_epoch in range(epoch_state, cfg.n_epochs):
for idx_iter, (data, label) in tqdm(enumerate(train_loader), total=len(train_loader)):
out = net(data.to(cfg.device))
loss = criterion_Loss(out, label.to(cfg.device))
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_epoch.append(loss.data.cpu())
if idx_epoch % 1 == 0:
loss_list.append(float(np.array(loss_epoch).mean()))
print(time.ctime()[4:-5] + ' Epoch----%5d, loss---%f' % (idx_epoch + 1, float(np.array(loss_epoch).mean())))
if cfg.parallel:
save_ckpt({
'epoch': idx_epoch + 1,
'state_dict': net.module.state_dict(),
}, save_path='./log/', filename=cfg.model_name + '_epoch_' + str(idx_epoch + 1) + '.pth.tar')
else:
save_ckpt({
'epoch': idx_epoch + 1,
'state_dict': net.state_dict(),
}, save_path='./log/', filename=cfg.model_name + '_epoch_' + str(idx_epoch + 1) + '.pth.tar')
loss_epoch = []
''' evaluation '''
with torch.no_grad():
psnr_testset = []
ssim_testset = []
for index, test_name in enumerate(test_Names):
test_loader = test_loaders[index]
psnr_epoch_test, ssim_epoch_test = valid(test_loader, net)
psnr_testset.append(psnr_epoch_test)
ssim_testset.append(ssim_epoch_test)
print(time.ctime()[4:-5] + ' Valid----%15s, PSNR---%f, SSIM---%f' % (test_name, psnr_epoch_test, ssim_epoch_test))
pass
pass
scheduler.step()
pass
def valid(test_loader, net):
psnr_iter_test = []
ssim_iter_test = []
for idx_iter, (data, label) in (enumerate(test_loader)):
data = data.squeeze().to(cfg.device) # numU, numV, h*angRes, w*angRes
label = label.squeeze().to(cfg.device)
if cfg.crop == False:
with torch.no_grad():
outLF = net(data.unsqueeze(0).unsqueeze(0).to(cfg.device))
outLF = outLF.squeeze()
else:
lf_lr = rearrange(data.squeeze(), '(u h) (v w) -> u v h w', u=cfg.angRes, v=cfg.angRes)
patchsize = cfg.patchsize
stride = patchsize // 2
sub_lfs = LFdivide(lf_lr, patchsize, stride)
n1, n2, u, v, c, h, w = sub_lfs.shape
sub_lfs = rearrange(sub_lfs, 'n1 n2 u v c h w -> (n1 n2) c (u h) (v w)')
mini_batch = cfg.minibatch
num_inference = (n1 * n2) // mini_batch
with torch.no_grad():
out_lfs = []
for idx_inference in range(num_inference):
input_lfs = sub_lfs[idx_inference * mini_batch: (idx_inference + 1) * mini_batch, :, :, :]
out_lfs.append(net(input_lfs.to(cfg.device)))
if (n1 * n2) % mini_batch:
input_lfs = sub_lfs[(idx_inference + 1) * mini_batch:, :, :, :]
out_lfs.append(net(input_lfs.to(cfg.device)))
out_lfs = torch.cat(out_lfs, dim=0)
out_lfs = rearrange(out_lfs, '(n1 n2) c (u h) (v w) -> n1 n2 u v c h w', n1=n1, n2=n2, u=cfg.angRes,
v=cfg.angRes)
outLF = LFintegrate(out_lfs, patchsize * cfg.upfactor, patchsize * cfg.upfactor // 2)
outLF = outLF[:, :, 0: lf_lr.shape[2] * cfg.upfactor, 0: lf_lr.shape[3] * cfg.upfactor]
psnr, ssim = cal_metrics(label.to(cfg.device), outLF, cfg.angRes)
psnr_iter_test.append(psnr)
ssim_iter_test.append(ssim)
pass
psnr_epoch_test = float(np.array(psnr_iter_test).mean())
ssim_epoch_test = float(np.array(ssim_iter_test).mean())
return psnr_epoch_test, ssim_epoch_test
def save_ckpt(state, save_path='./log', filename='checkpoint.pth.tar'):
torch.save(state, os.path.join(save_path, filename))
if __name__ == '__main__':
cfg = parse_args()
train_set = TrainSetLoader(dataset_dir=cfg.trainset_dir)
train_loader = DataLoader(dataset=train_set, num_workers=cfg.num_workers, batch_size=cfg.batch_size, shuffle=True)
test_Names, test_Loaders, length_of_tests = MultiTestSetDataLoader(cfg)
train(cfg, train_loader, test_Names, test_Loaders)