-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
93 lines (71 loc) · 4.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer_training import Visualizer
if __name__ == '__main__':
opt = TrainOptions().parse() # get training options
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print(f'The length of training set: {len(dataset)}')
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
model.zero_grad_and_step()
for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
visualizer.reset() # reset the visualizer:
epoch_losses = None
# model training
model.train()
lr = model.get_learning_rate()
visualizer.plot_lr(epoch, lr)
display_iter = -1
print_iter = -1
for i, data in enumerate(dataset): # inner loop within one epoch
cur_data_size = data['A'].size()[0]
# print(f'Current batch length: {cur_data.size()}')
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += cur_data_size
epoch_iter += cur_data_size
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
model.cal_test_loss()
if total_iters % opt.display_freq == 0 or (total_iters-display_iter) > opt.display_freq: # display images
display_iter = total_iters
save_result = True
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
losses = model.get_current_losses()
if epoch_losses is None:
epoch_losses = losses
else:
for loss_name in epoch_losses.keys():
epoch_losses[loss_name] += losses[loss_name] * cur_data_size
if total_iters % opt.print_freq == 0 or (total_iters - print_iter) > opt.print_freq: # print training losses and save logging information to the disk
print_iter = total_iters
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, losses, epoch_iter, t_comp, t_data)
# plot loss curve on TensorBoard
visualizer.plot_current_losses(epoch, losses, cur_iter=total_iters)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
for loss_name in epoch_losses.keys():
epoch_losses[loss_name] /= dataset_size
# plot and print mean loss of current epoch
visualizer.plot_current_losses(epoch, epoch_losses, is_epoch_loss=True)
visualizer.print_current_losses(epoch, epoch_losses, is_epoch_loss=True)
model.update_learning_rate(epoch+1) # update learning rates at the end of every epoch.
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))