-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
406 lines (334 loc) · 15.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# 1. import module
## utils
import random
import os
from random import sample
import numpy as np
import pickle
import time
import sys
import copy
import argparse
import warnings
import matplotlib
import matplotlib.pyplot as plt
from PIL import Image
from tqdm import tqdm
from collections import OrderedDict
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, accuracy_score, recall_score, precision_score, confusion_matrix, precision_recall_curve
from scipy.ndimage import gaussian_filter
from skimage import morphology
from skimage.segmentation import mark_boundaries
## torch module
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
## eff model
from efficient_modified import EfficientNetModified
## mvtec datasets
import datasets.mvtec as mvtec
## filter warnings
warnings.filterwarnings('ignore')
# 2. choose device
use_cuda = torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
# 3. argparse
def parse_args():
parser = argparse.ArgumentParser('PaDiM Parameters')
parser.add_argument('-d', '--data_path', type=str, required=True, help='mvtec data location')
parser.add_argument('-s', '--save_path', type=str, required=True, help='inference model & data location')
parser.add_argument('-a', '--arch', type=str, choices=['b0', 'b1', 'b4', 'b7'], default='b4')
parser.add_argument('-b', '--batch_size', type=int, default=32)
parser.add_argument('--training', action='store_true')
parser.add_argument('--seed', type=int, default=1024)
parser.add_argument('--resize', type=int, default=256)
parser.add_argument('--cropsize', type=int, default=224)
parser.add_argument('--model_print', action='store_true')
parser.add_argument('--img_print', action='store_true')
return parser.parse_args()
# epoch, random_select size
def create_seed(filters):
random.seed(args.seed)
torch.manual_seed(args.seed)
if use_cuda:
torch.cuda.manual_seed_all(args.seed)
def embedding_concat(x, y):
B, C1, H1, W1 = x.size()
_, C2, H2, W2 = y.size()
s = int(H1/H2)
x = F.unfold(x, kernel_size=s, dilation=1, stride=s)
x = x.view(B, C1, -1, H2, W2)
z = torch.zeros(B, C1 + C2, x.size(2), H2, W2)
for i in range(x.size(2)):
z[:, :, i, :, :] = torch.cat((x[:, :, i, :, :], y), 1)
z = z.view(B, -1, H2 * W2)
z = F.fold(z, kernel_size=s, output_size=(H1, W1), stride=s)
return z
def show_feat_list(model, size=(1, 3, 224, 224)):
sample_inputs = torch.zeros(size)
feat_list = model.extract_entire_features(sample_inputs)
for i, feat in enumerate(feat_list, 0):
print(i, feat.shape)
def denormalize(img):
mean = torch.tensor([0.485, 0.456, 0.406])
std = torch.tensor([0.229, 0.224, 0.225])
return img.mul_(std).add_(mean)
def show_sample_images(dataloader, n, class_name):
x, _, _ = next(iter(dataloader))
if x == None:
print('[error] dataloader empty!')
return
if n > args.batch_size:
print('[error] n exceeds batch size!')
return
rows = n//4
cols = 4
axes = []
fig = plt.figure(figsize=(20, 20), dpi=200)
for i in range(rows*cols):
axes.append(fig.add_subplot(rows, cols, i+1))
title = '%s subplot %d' % (class_name, i)
axes[-1].set_title(title)
axes[-1].imshow(denormalize(x[i].permute(1, 2, 0)))
fig.tight_layout()
pic_save_path = os.path.join(args.save_path, 'sample_%s' % (class_name))
fig.savefig(pic_save_path, dpi=200)
plt.show()
def calc_covinv(embedding_vectors, H, W, C):
for i in range(H * W):
yield np.linalg.inv(np.cov(embedding_vectors[:, :, i].numpy(), rowvar=False) + 0.01 * np.identity(C))
def plot_fig(test_img, scores, gts, threshold, save_dir, class_name):
num = len(scores)
vmax = scores.max() * 255.
vmin = scores.min() * 255.
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
for i in range(num):
img = test_img[i]
img = (((img.transpose(1, 2, 0) * std) + mean) * 255.).astype(np.uint8) # denormalize
gt = gts[i].transpose(1, 2, 0).squeeze()
heat_map = scores[i] * 255
mask = scores[i]
mask[mask > threshold] = 1
mask[mask <= threshold] = 0
kernel = morphology.disk(4)
mask = morphology.opening(mask, kernel)
mask *= 255
vis_img = mark_boundaries(img, mask, color=(1, 0, 0), mode='thick')
fig_img, ax_img = plt.subplots(1, 5, figsize=(12, 3))
fig_img.subplots_adjust(right=0.9)
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
for ax_i in ax_img:
ax_i.axes.xaxis.set_visible(False)
ax_i.axes.yaxis.set_visible(False)
ax_img[0].imshow(img)
ax_img[0].title.set_text('Image')
ax_img[1].imshow(gt, cmap='gray')
ax_img[1].title.set_text('GroundTruth')
ax = ax_img[2].imshow(heat_map, cmap='jet', norm=norm)
ax_img[2].imshow(img, cmap='gray', interpolation='none')
ax_img[2].imshow(heat_map, cmap='jet', alpha=0.5, interpolation='none')
ax_img[2].title.set_text('Predicted heat map')
ax_img[3].imshow(mask, cmap='gray')
ax_img[3].title.set_text('Predicted mask')
ax_img[4].imshow(vis_img)
ax_img[4].title.set_text('Segmentation result')
left = 0.92
bottom = 0.15
width = 0.015
height = 1 - 2 * bottom
rect = [left, bottom, width, height]
cbar_ax = fig_img.add_axes(rect)
cb = plt.colorbar(ax, shrink=0.6, cax=cbar_ax, fraction=0.046)
cb.ax.tick_params(labelsize=8)
font = {
'family': 'serif',
'color': 'black',
'weight': 'normal',
'size': 8,
}
cb.set_label('Anomaly Score', fontdict=font)
fig_img.savefig(os.path.join(save_dir, class_name + '_{}'.format(i)), dpi=100)
plt.close()
def main():
# make directory for saving data
os.makedirs(os.path.join(args.save_path, 'model_pkl_%s' % name), exist_ok=True)
# capture ROCAUC score
fig, ax = plt.subplots(1, 2, figsize=(20, 10))
fig_img_rocauc = ax[0]
fig_pixel_rocauc = ax[1]
total_roc_auc = []
total_pixel_roc_auc = []
if args.arch == 'b0':
block_num = torch.tensor([3, 5, 11]) # b0
filters = (24 + 40 + 112) # 176
elif args.arch == 'b1':
# block_num = torch.tensor([3, 6, 9]) # b1 first, 24 + 40 + 80
# block_num = torch.tensor([4, 7, 13]) # b1 medium 24 + 40 + 112
block_num = torch.tensor([5, 8, 16]) # b1 last 24 + 40 + 112
filters = (24 + 40 + 112) # 176
elif args.arch == 'b4':
# block_num = torch.tensor([3, 7, 11]) # b4 (32 + 56 + 112)
block_num = torch.tensor([3, 7, 17]) # b4 (32 + 56 + 160)
# block_num = torch.tensor([5, 9, 13]) # (32 + 56 + 112)
# block_num = torch.tensor([5, 9, 20]) # b4 (32 + 56 + 160)
# block_num = torch.tensor([6, 10, 22]) # b4 (32 + 56 + 160)
filters = (32 + 56 + 160) # 248
elif args.arch == 'b7':
block_num = torch.tensor([11, 18, 38]) # b7 (48 + 80 + 224) # last
# block_num = torch.tensor([5, 12, 29]) # b7 (48 + 80 + 224) # first
# block_num = torch.tensor([8, 15, 33]) # medium
filters = (48 + 80 + 224) # 352
'''
The number of filters is so small that I want to take the entire filter, not randomly.
So I'm going to delete the random code this time.
'''
create_seed(filters)
# model attach to device
eff_model.to(device)
print('training: ', args.training)
for k, class_name in enumerate(mvtec.CLASS_NAMES):
train_dataset = mvtec.MVTecDataset(args.data_path, class_name=class_name, is_train=True)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, pin_memory=True)
test_dataset = mvtec.MVTecDataset(args.data_path, class_name=class_name, is_train=False)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, pin_memory=True)
train_outputs = OrderedDict([('layer1', []), ('layer2', []), ('layer3', [])])
test_outputs = OrderedDict([('layer1', []), ('layer2', []), ('layer3', [])])
# plt.show vscode not work, so save fig
if args.img_print:
show_sample_images(train_dataloader, args.batch_size // 8, class_name)
# model_path
train_feature_filepath = os.path.join(args.save_path, 'model_pkl_%s' % name, 'train_%s.pkl' % class_name)
if args.training:
if os.path.exists(train_feature_filepath):
os.remove(train_feature_filepath)
eff_model.eval()
for (x, _, _) in tqdm(train_dataloader, '%d | feature extraction | train | %s |' % (k, class_name)):
with torch.no_grad():
feats = eff_model.extract_features(x.to(device), block_num.to(device))
# If you want to see the shape of the feature...
# for i, feat in enumerate(feats):
# print("layer {} feature's shape: {}".format(i, feat.shape))
for k, v in zip(train_outputs.keys(), feats):
train_outputs[k].append(v.cpu().detach())
for k, v in train_outputs.items():
train_outputs[k] = torch.cat(v, 0)
embedding_vectors = train_outputs['layer1']
for layer_name in ['layer2', 'layer3']:
embedding_vectors = embedding_concat(embedding_vectors, train_outputs[layer_name])
B, C, H, W = embedding_vectors.size()
print("embedding vector's size: {}, {}, {}, {}".format(B, C, H, W))
embedding_vectors = embedding_vectors.view(B, C, H * W)
mean = torch.mean(embedding_vectors, dim=0).numpy()
cov_inv = torch.zeros(C, C, H * W).numpy()
I = np.identity(C)
# It's done with generator, but it doesn't matter what you do because there's not much memory difference.
# cc = calc_covinv(embedding_vectors, H, W, C)
# for i, value in enumerate(cc):
# cov_inv[:, :, i] = value
for i in range(H * W):
cov_inv[:, :, i] = np.linalg.inv(np.cov(embedding_vectors[:, :, i].numpy(), rowvar=False) + 0.01 * I)
# save learned distribution
train_outputs = [mean, cov_inv]
with open(train_feature_filepath, 'wb') as f:
pickle.dump(train_outputs, f, protocol=pickle.HIGHEST_PROTOCOL)
else:
if not os.path.exists(train_feature_filepath):
print('train set feature file not exists: {}'.format(train_feature_filepath))
else:
print('load train set feat file from %s' % train_feature_filepath)
with open(train_feature_filepath, 'rb') as f:
train_outputs = pickle.load(f)
gt_list = []
gt_mask_list = []
test_imgs = []
# If you pass without picking a feature
# Depending on eval, the method of calculating bn, dropout etc varies.
eff_model.eval()
for (x, y, mask) in tqdm(test_dataloader, '| feature extraction | test | %s |' % class_name):
test_imgs.extend(x.cpu().detach().numpy())
gt_list.extend(y.cpu().detach().numpy())
gt_mask_list.extend(mask.cpu().detach().numpy())
with torch.no_grad():
feats = eff_model.extract_features(x.to(device), block_num.to(device))
for k, v in zip(test_outputs.keys(), feats):
test_outputs[k].append(v.cpu().detach())
for k, v in test_outputs.items():
test_outputs[k] = torch.cat(v, 0)
embedding_vectors = test_outputs['layer1']
for layer_name in ['layer2', 'layer3']:
embedding_vectors = embedding_concat(embedding_vectors, test_outputs[layer_name])
inference_start = time.time()
B, C, H, W = embedding_vectors.size()
embedding_vectors = embedding_vectors.view(B, C, H * W).to(device)
mean = torch.Tensor(train_outputs[0]).to(device)
cov_inv = torch.Tensor(train_outputs[1]).to(device)
dist_list = torch.zeros(size=(H*W, B))
for i in range(H*W):
delta = embedding_vectors[:, :, i] - mean[:, i]
m_dist = torch.sqrt(torch.diag(torch.mm(torch.mm(delta, cov_inv[:, :, i]), delta.t())))
dist_list[i] = m_dist
dist_list = dist_list.transpose(1, 0).view(B, H, W)
score_map = F.interpolate(dist_list.unsqueeze(1), size=x.size(2), mode='bilinear', align_corners=False).squeeze().cpu().numpy()
for i in range(score_map.shape[0]):
score_map[i] = gaussian_filter(score_map[i], sigma=4)
inference_time = time.time() - inference_start
print('{} inference time: {:.3f}'.format(class_name, inference_time))
# Normalization
max_score = score_map.max()
min_score = score_map.min()
scores = (score_map - min_score) / (max_score - min_score)
# calculate image-level ROC AUC score
img_scores = scores.reshape(scores.shape[0], -1).max(axis=1)
gt_list = np.asarray(gt_list)
fpr, tpr, img_thresholds = roc_curve(gt_list, img_scores)
img_roc_auc = roc_auc_score(gt_list, img_scores)
total_roc_auc.append(img_roc_auc)
print('image ROCAUC: %.3f' % (img_roc_auc))
fig_img_rocauc.plot(fpr, tpr, label='%s img_ROCAUC: %.3f' % (class_name, img_roc_auc))
# get optimal threshold based Label
distances = (tpr - 1.) ** 2 + fpr ** 2
img_threshold = img_thresholds[np.argmin(distances)]
gt_mask = np.asarray(gt_mask_list)
precision, recall, thresholds = precision_recall_curve(gt_mask.flatten(), scores.flatten())
a = 2 * precision * recall
b = precision + recall
f1 = np.divide(a, b, out=np.zeros_like(a), where=b != 0)
threshold = thresholds[np.argmax(f1)]
# label, mask two types threshold
print('label based threshold: {:.3f}, pixel based threshold: {:.3f}'.format(img_threshold, threshold))
# calculate per-pixel level ROCAUC
fpr, tpr, _ = roc_curve(gt_mask.flatten(), scores.flatten())
per_pixel_rocauc = roc_auc_score(gt_mask.flatten(), scores.flatten())
total_pixel_roc_auc.append(per_pixel_rocauc)
print('pixel ROCAUC: %.3f' % (per_pixel_rocauc))
fig_pixel_rocauc.plot(fpr, tpr, label='%s ROCAUC: %.3f' % (class_name, per_pixel_rocauc))
save_dir = args.save_path + '/' + f'pictures_efficientnet-{args.arch}'
os.makedirs(save_dir, exist_ok=True)
plot_fig(test_imgs, scores, gt_mask_list, threshold, save_dir, class_name)
# class, image ROCAUC, pixel ROCAUC, inference_time
with open(args.save_path + '/' + f'efficientnet-{args.arch}-lst.txt', "a") as f:
f.write('{}-{:.3f}-{:.3f}-{:.3f}\n'.format(class_name, img_roc_auc, per_pixel_rocauc, inference_time))
print('Average ROCAUC: %.3f' % np.mean(total_roc_auc))
fig_img_rocauc.title.set_text('Average image ROCAUC: %.3f' % np.mean(total_roc_auc))
fig_img_rocauc.legend(loc="lower right")
print('Average pixel ROCUAC: %.3f' % np.mean(total_pixel_roc_auc))
fig_pixel_rocauc.title.set_text('Average pixel ROCAUC: %.3f' % np.mean(total_pixel_roc_auc))
fig_pixel_rocauc.legend(loc="lower right")
fig.tight_layout()
fig.savefig(os.path.join(args.save_path, '%s_lst_roc_curve.png' % name), dpi=100)
if __name__ == '__main__':
args = parse_args()
name = 'efficientnet-{}'.format(args.arch)
eff_model = EfficientNetModified.from_pretrained(name)
if args.model_print:
print(eff_model)
#show_feat_list(eff_model)
main()
# print(dir(eff_model))
# test code
# for i, (name, layer) in enumerate(eff_model.named_modules()):
# print(i, name)
# for i, block in enumerate(eff_model._blocks):
# print(i)