-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparsegpt_gptq.py
165 lines (134 loc) · 5.58 KB
/
sparsegpt_gptq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import math
import time
import torch
import torch.nn as nn
import transformers
from quant import *
DEBUG = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
class SparseGPT:
def __init__(self, layer, bits=8):
self.layer = layer
self.bits = bits # Default precision for quantization
self.dev = self.layer.weight.device
W = layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
self.rows = W.shape[0]
self.columns = W.shape[1]
self.H = torch.zeros((self.columns, self.columns), device=self.dev)
self.nsamples = 0
def add_batch(self, inp, out, blocksize=1024):
if DEBUG:
self.inp1 = inp
self.out1 = out
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape[0]
if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D):
if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))
inp = inp.t()
self.H *= self.nsamples / (self.nsamples + tmp)
self.nsamples += tmp
inp = math.sqrt(2 / self.nsamples) * inp.float()
self.H += inp.matmul(inp.t())
def fasterprune(
self, sparsity, prunen=0, prunem=0, blocksize=128, percdamp=.01
):
W = self.layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1, D):
W = W.t()
W = W.float()
# Apply GPTQ before pruning
grad_importance = torch.abs(self.layer.weight.grad) # Gradient information for GPTQ
sensitivity = grad_importance / grad_importance.sum() # Sensitivity calculation
additional_bits = torch.ceil(self.bits * sensitivity).int() # Additional bits based on sensitivity
total_bits = self.bits + additional_bits # Total bits for each weight
# Quantization process starts here
qmin, qmax = 0, (2**total_bits - 1).float()
scale = (W.max() - W.min()) / (qmax - qmin)
zero_point = qmin - W.min() / scale
quantized_weights = torch.round((W - zero_point) / scale)
dequantized_weights = quantized_weights * scale + zero_point
W = dequantized_weights
# Continue with existing pruning logic
if hasattr(self, 'quantizer'):
if not self.quantizer.ready():
self.quantizer.find_params(W, weight=True)
tick = time.time()
H = self.H
del self.H
dead = torch.diag(H) == 0
H[dead, dead] = 1
W[:, dead] = 0
Losses = torch.zeros(self.rows, device=self.dev)
damp = percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
H[diag, diag] += damp
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
H = torch.linalg.cholesky(H, upper=True)
Hinv = H
mask = None
for i1 in range(0, self.columns, blocksize):
i2 = min(i1 + blocksize, self.columns)
count = i2 - i1
W1 = W[:, i1:i2].clone()
Q1 = torch.zeros_like(W1)
Err1 = torch.zeros_like(W1)
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]
if prunen == 0:
if mask is not None:
mask1 = mask[:, i1:i2]
else:
tmp = W1 ** 2 / (torch.diag(Hinv1).reshape((1, -1))) ** 2
thresh = torch.sort(tmp.flatten())[0][int(tmp.numel() * sparsity)]
mask1 = tmp <= thresh
else:
mask1 = torch.zeros_like(W1) == 1
for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]
if prunen != 0 and i % prunem == 0:
tmp = W1[:, i:(i + prunem)] ** 2 / (torch.diag(Hinv1)[i:(i + prunem)].reshape((1, -1))) ** 2
mask1.scatter_(1, i + torch.topk(tmp, prunen, dim=1, largest=False)[1], True)
q = w.clone()
q[mask1[:, i]] = 0
if hasattr(self, 'quantizer'):
q = quantize(
q.unsqueeze(1), self.quantizer.scale, self.quantizer.zero, self.quantizer.maxq
).flatten()
Q1[:, i] = q
Losses1[:, i] = (w - q) ** 2 / d ** 2
err1 = (w - q) / d
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
Err1[:, i] = err1
W[:, i1:i2] = Q1
Losses += torch.sum(Losses1, 1) / 2
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
if DEBUG:
self.layer.weight.data[:, :i2] = W[:, :i2]
self.layer.weight.data[:, i2:] = W[:, i2:]
print(torch.sum((self.layer(self.inp1) - self.out1) ** 2))
print(torch.sum(Losses))
torch.cuda.synchronize()
print('time %.2f' % (time.time() - tick))
print('error', torch.sum(Losses).item())
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
self.layer.weight.data = W.reshape(self.layer.weight.shape).to(self.layer.weight.data.dtype)
if DEBUG:
print(torch.sum((self.layer(self.inp1) - self.out1) ** 2))
def free(self):
if DEBUG:
self.inp1 = None
self.out1 = None
self.H = None
torch.cuda.empty_cache()