-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfull-supervised.py
292 lines (266 loc) · 15 KB
/
full-supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from __future__ import division
from __future__ import print_function
import time
import random
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from process import *
from utils import *
from model import *
from model_GeomGCN import *
from torch_geometric.data import Data
import dgl
import uuid
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=1500, help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01, help='learning rate.')
parser.add_argument('--weight_decay', type=float, default=0.01, help='weight decay (L2 loss on parameters).')
parser.add_argument('--layer', type=int, default=2, help='Number of layers.')
parser.add_argument('--hidden', type=int, default=64, help='hidden dimensions.')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate (1 - keep probability).')
parser.add_argument('--dprate_GPRGNN', type=float, default=0.5, help='Dprate for GPRGNN.')
parser.add_argument('--patience', type=int, default=100, help='Patience')
parser.add_argument('--data', default='cora', help='dateset')
parser.add_argument('--dev', type=int, default=0, help='device id')
parser.add_argument('--alpha', type=float, default=0.5, help='alpha_l')
parser.add_argument('--alpha_GPRGNN', type=float, default=0.1, help='alpha for GPRGNN')
parser.add_argument('--Gamma_GPRGNN', default=None, help='Gamma for GPRGNN')
parser.add_argument('--Init_GPRGNN', type=str,
choices=['SGC', 'PPR', 'NPPR', 'Random', 'WS', 'Null'],
default='PPR', help='Initialization for GPRGNN')
parser.add_argument('--ppnp_GPRGNN', default='GPR_prop',
choices=['PPNP', 'GPR_prop'], help='choice of propagation for GPRGNN')
parser.add_argument('--lamda', type=float, default=0.5, help='lamda.')
parser.add_argument('--variant', action='store_true', default=False, help='GCNII* model.')
parser.add_argument('--model', type=str, default="GCN", help='choose models: GCN, GCNII, MLP, GAT ,PN, GPRGNN, GGCN(ours)')
parser.add_argument('--alpha_relu', type=float, default=0.2, help='Alpha for the leaky_relu.')
parser.add_argument('--nb_heads', type=int, default=8, help='Number of head attentions.')
parser.add_argument('--row_normalized_adj', action='store_true', default=False, help='choose normalization')
parser.add_argument('--no_degree', action='store_false', default=True, help='do not use degree correction (degree correction only used with symmetric normalization)')
parser.add_argument('--no_sign', action='store_false', default=True, help='do not use signed weights')
parser.add_argument('--no_decay', action='store_false', default=True, help='do not use decaying in the residual connection')
parser.add_argument('--use_bn', action='store_true', default=False, help='use batch norm when not using decaying')
parser.add_argument('--use_ln', action='store_true', default=False, help='use layer norm when not using decaying')
parser.add_argument('--exponent', type=float, default=3.0, help='exponent in the decay function')
parser.add_argument('--decay_rate', type=float, default=1.0, help='decay_rate in the decay function')
parser.add_argument('--use_res', action='store_true', default=False, help='use residual connection for MLP')
parser.add_argument('--use_sparse', action='store_true', default=False, help='use sparse version of GGNN and GAT for large graphs')
parser.add_argument('--scale_init', type=float, default=0.5, help='initial values of scale (when decaying combination is not used)')
parser.add_argument('--deg_intercept_init', type=float, default=0.5, help='initial values of deg_intercept (when decaying combination is not used)')
parser.add_argument('--get_degree', action='store_true', default=False, help='get acc V.S degree (Only support GCN model)')
parser.add_argument('--n_groups', type=int, default=5, help='Number of degree groups.')
################# GeomGCN parameters#########################################################################
parser.add_argument('--ggcn_merge', type=str, default='cat')
parser.add_argument('--channel_merge', type=str, default='cat')
parser.add_argument('--ggcn_merge_last', type=str, default='mean')
parser.add_argument('--channel_merge_last', type=str, default='mean')
parser.add_argument('--num_divisions', type=int, default=9)
parser.add_argument('--learning_rate_decay_patience', type=int, default=50, help='learning rate decay patience (only for GeomGCN baseline)')
parser.add_argument('--learning_rate_decay_factor', type=float, default=0.8, help='only for GeomGCN baseline')
parser.add_argument('--emb', type=str, default='poincare', help='Embedding methods used for GeomGCN baseline, poincare, struc2vec, MDS')
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
cudaid = "cuda:"+str(args.dev)
device = torch.device(cudaid if torch.cuda.is_available() else "cpu")
current_time = time.strftime("%d_%H_%M_%S", time.localtime(time.time()))
checkpt_file = 'pretrained/'+"{}_{}_{}".format(args.model, args.data, current_time)+'.pt'
print(cudaid,checkpt_file)
def get_acc_h_dist(output, out_last2, labels, deg_vec, idx_test, raw_adj, n_groups=args.n_groups):
####### nonzero degree nodes mapping ############
nonzero_ids = (deg_vec!=0)
deg_max = np.max(deg_vec[nonzero_ids])
deg_min = np.min(deg_vec[nonzero_ids])
upper = np.log2(deg_max)
lower = np.log2(deg_min)
group_end = np.linspace(lower, upper, num=n_groups+1)
# print(np.power(2, group_end))
##### make sure to include the nodes with the max degree
group_end[-1] += 1
group_mapping = np.zeros((n_groups,deg_vec.shape[-1]), dtype=np.bool)
for i, ind_deg in enumerate(deg_vec):
if ind_deg!=0:
g_id = np.argmax(group_end>np.log2(ind_deg))
if g_id!=0:
g_id -= 1
group_mapping[g_id, i] = True
nodes_in_same_class = torch.eq(torch.unsqueeze(labels,1), torch.unsqueeze(labels,0)).double()
neib_in_same_class = raw_adj.to_dense()*nodes_in_same_class
preds = out_last2.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct_same_class_neib = torch.matmul(neib_in_same_class, torch.unsqueeze(correct,1))
h_whole = torch.squeeze(correct_same_class_neib)/torch.max(torch.tensor(deg_vec), torch.ones_like(torch.tensor(deg_vec)))
h_whole_ori = torch.sum(neib_in_same_class,-1)/torch.max(torch.tensor(deg_vec), torch.ones_like(torch.tensor(deg_vec)))
acc_deg = np.zeros((n_groups))
h_deg = np.zeros((n_groups))
h_deg_ori = np.zeros((n_groups))
for j in range(n_groups):
j_group_test = torch.logical_and(torch.BoolTensor(group_mapping[j,:]), idx_test)
if torch.any(j_group_test):
acc_deg[j] = accuracy(output[j_group_test], labels[j_group_test].to(device))
h_deg[j] = torch.mean(h_whole[j_group_test])
h_deg_ori[j] = torch.mean(h_whole_ori[j_group_test])
else:
acc_deg[j] = -1
h_deg[j] = -1
h_deg_ori[j] = -1
return acc_deg, h_deg, h_deg_ori
def train_step(model,optimizer, features, labels, adj, idx_train, use_geom):
model.train()
optimizer.zero_grad()
if use_geom:
output = model(features)
else:
output = model(features,adj)
acc_train = accuracy(output[idx_train], labels[idx_train].to(device))
loss_train = F.nll_loss(output[idx_train], labels[idx_train].to(device))
loss_train.backward()
optimizer.step()
return loss_train.item(),acc_train.item()
def validate_step(model,features,labels,adj,idx_val, use_geom):
model.eval()
with torch.no_grad():
if use_geom:
output = model(features)
else:
output = model(features,adj)
loss_val = F.nll_loss(output[idx_val], labels[idx_val].to(device))
acc_val = accuracy(output[idx_val], labels[idx_val].to(device))
return loss_val.item(),acc_val.item()
def test_step(model, features, labels, adj, idx_test, use_geom, deg_vec, raw_adj):
model.load_state_dict(torch.load(checkpt_file))
model.eval()
with torch.no_grad():
if use_geom:
output = model(features)
else:
output = model(features,adj)
loss_test = F.nll_loss(output[idx_test], labels[idx_test].to(device))
acc_test = accuracy(output[idx_test], labels[idx_test].to(device))
if deg_vec is not None:
out_last2 = model(features,adj, True)
acc_deg, h_deg, h_deg_ori = get_acc_h_dist(output, out_last2, labels, deg_vec, idx_test, raw_adj)
else:
acc_deg = None
h_deg = None
h_deg_ori = None
return loss_test.item(), acc_test.item(), [acc_deg, h_deg, h_deg_ori]
def train(datastr,splitstr):
use_geom=(args.model=='GEOMGCN')
get_degree = (args.get_degree) & (args.model=="GCN")
adj, features, labels, idx_train, idx_val, idx_test, num_features, num_labels, deg_vec, raw_adj = full_load_data(datastr,splitstr,args.row_normalized_adj, model_type=args.model, embedding_method=args.emb, get_degree=get_degree)
# print(torch.sum(torch.ones(idx_train.shape[0])[idx_train])/idx_train.shape[0]) ### check the training percentage
features = features.to(device)
adj = adj.to(device)
if args.model=="GCN":
model = GCN (nfeat=features.shape[1],
nlayers=args.layer,
nhid=args.hidden,
nclass=num_labels,
dropout=args.dropout).to(device)
elif args.model=="GCNII":
model = GCNII(nfeat=features.shape[1],
nlayers=args.layer,
nhidden=args.hidden,
nclass=num_labels,
dropout=args.dropout,
lamda = args.lamda,
alpha=args.alpha,
variant=args.variant).to(device)
elif args.model=="GAT":
model = GAT(nfeat=features.shape[1],
nlayers=args.layer,
nhid=args.hidden,
nclass=num_labels,
dropout=args.dropout,
alpha=args.alpha_relu,
nheads=args.nb_heads, use_sparse=args.use_sparse).to(device)
if not args.use_sparse:
adj = adj.to_dense()
elif args.model=="PN":
model = DeepGCN(nfeat=features.shape[1], nhid=args.hidden, nclass=num_labels, dropout=args.dropout, nlayer=args.layer, norm_mode="PN").to(device)
elif args.model=="GPRGNN":
model = GPRGNN(nfeat=features.shape[1], nlayers=args.layer, nhidden=args.hidden, nclass=num_labels, dropout=args.dropout, dprate_GPRGNN=args.dprate_GPRGNN, alpha_GPRGNN=args.alpha_GPRGNN, Gamma_GPRGNN=args.Gamma_GPRGNN, Init_GPRGNN=args.Init_GPRGNN, ppnp_GPRGNN=args.ppnp_GPRGNN).to(device)
elif args.model=="GGCN":
use_degree = (args.no_degree) & (not args.row_normalized_adj)
use_sign = args.no_sign
use_decay = args.no_decay
use_bn = (args.use_bn) & (not use_decay)
use_ln = (args.use_ln) & (not use_decay) & (not use_bn)
model = GGCN(nfeat=features.shape[1], nlayers=args.layer, nhidden=args.hidden, nclass=num_labels, dropout=args.dropout, decay_rate=args.decay_rate, exponent=args.exponent, use_degree=use_degree, use_sign=use_sign, use_decay=use_decay, use_sparse=args.use_sparse, scale_init=args.scale_init, deg_intercept_init=args.deg_intercept_init, use_bn=use_bn, use_ln=use_ln).to(device)
if not args.use_sparse:
adj = adj.to_dense()
elif args.model=="MLP":
model = MLP(nfeat=features.shape[1], nlayers=args.layer, nhidden=args.hidden, nclass=num_labels, dropout=args.dropout, use_res=args.use_res).to(device)
adj = adj.to_dense()
elif args.model=="GEOMGCN":
adj.set_n_initializer(dgl.init.zero_initializer)
adj.set_e_initializer(dgl.init.zero_initializer)
model = GeomGCNNet(g=adj, nlayers=args.layer, num_input_features=features.shape[1], num_output_classes=num_labels, num_hidden=args.hidden,
num_divisions=args.num_divisions, num_heads=args.nb_heads, dropout_rate=args.dropout, ggcn_merge=args.ggcn_merge, channel_merge=args.channel_merge, ggcn_merge_last=args.ggcn_merge_last, channel_merge_last=args.channel_merge_last).to(device)
else:
raise NotImplementedError
optimizer = optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
if use_geom:
learning_rate_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,
factor=args.learning_rate_decay_factor,
patience=args.learning_rate_decay_patience)
bad_counter = 0
best = 999999999
for epoch in range(args.epochs):
loss_tra,acc_tra = train_step(model,optimizer,features,labels,adj,idx_train, use_geom)
loss_val,acc_val = validate_step(model,features,labels,adj,idx_val, use_geom)
if(epoch+1)%1 == 0:
print('Epoch:{:04d}'.format(epoch+1),
'train',
'loss:{:.3f}'.format(loss_tra),
'acc:{:.2f}'.format(acc_tra*100),
'| val',
'loss:{:.3f}'.format(loss_val),
'acc:{:.2f}'.format(acc_val*100))
if loss_val < best:
best = loss_val
torch.save(model.state_dict(), checkpt_file)
bad_counter = 0
else:
bad_counter += 1
if bad_counter == args.patience:
break
test_res = test_step(model,features,labels,adj,idx_test, use_geom, deg_vec, raw_adj)
acc = test_res[1]
acc_deg, h_deg, h_deg_ori = test_res[-1]
return acc*100, acc_deg, h_deg, h_deg_ori
t_total = time.time()
acc_list = []
acc_deg_mean = np.zeros((args.n_groups))
h_deg_mean = np.zeros((args.n_groups))
h_deg_ori_mean = np.zeros((args.n_groups))
for i in range(10):
datastr = args.data
splitstr = 'splits/'+args.data+'_split_0.6_0.2_'+str(i)+'.npz'
acc, acc_deg, h_deg, h_deg_ori = train(datastr,splitstr)
acc_list.append(acc)
if acc_deg is not None:
acc_nonzero = (acc_deg!=-1)
acc_deg_mean[acc_nonzero] = (acc_deg_mean[acc_nonzero]*i+acc_deg[acc_nonzero])/(i+1)
h_nonzero = (h_deg!=-1)
h_deg_mean[h_nonzero] = (h_deg_mean[h_nonzero]*i+h_deg[h_nonzero])/(i+1)
h_ori_nonzero = (h_deg_ori!=-1)
h_deg_ori_mean[h_ori_nonzero] = (h_deg_ori_mean[h_ori_nonzero]*i+h_deg_ori[h_ori_nonzero])/(i+1)
print(i,": {:.2f}".format(acc_list[-1]))
print("Train cost: {:.4f}s".format(time.time() - t_total))
print("Test acc.:{:.2f}".format(np.mean(acc_list)))
print("Test std.:{:.2f}".format(np.std(acc_list)))
if (args.get_degree) & (args.model=="GCN"):
with np.printoptions(precision=2, suppress=True):
print("Acc deg:{}".format(acc_deg_mean*100))
print("Homophily deg:{}".format(h_deg_mean))
print("Original homophily deg:{}".format(h_deg_ori_mean))