forked from googleinterns/wss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
262 lines (215 loc) · 10.1 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Lint as: python2, python3
# Copyright 2020 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluation script for the DeepLab model.
See model.py for more details and usage.
"""
from absl import flags
import numpy as np
import six
import tensorflow.compat.v1 as tf
from tensorflow.contrib import metrics as contrib_metrics
from tensorflow.contrib import quantize as contrib_quantize
from tensorflow.contrib import tfprof as contrib_tfprof
from tensorflow.contrib import training as contrib_training
from third_party.deeplab import common
from third_party.deeplab.core import feature_extractor
# Custom import
from core import data_generator
from core import model
FLAGS = flags.FLAGS
flags.DEFINE_string('master', '', 'BNS name of the tensorflow server')
## DeepLab options
# Settings for log directories.
flags.DEFINE_string('eval_logdir', None, 'Where to write the event logs.')
flags.DEFINE_string('checkpoint_dir', None, 'Directory of model checkpoints.')
# Settings for evaluating the model.
flags.DEFINE_integer('eval_batch_size', 1,
'The number of images in each batch during evaluation.')
flags.DEFINE_list('eval_crop_size', '513,513',
'Image crop size [height, width] for evaluation.')
flags.DEFINE_integer('eval_interval_secs', 60 * 5,
'How often (in seconds) to run evaluation.')
# For `xception_65`, use atrous_rates = [12, 24, 36] if output_stride = 8, or
# rates = [6, 12, 18] if output_stride = 16. For `mobilenet_v2`, use None. Note
# one could use different atrous_rates/output_stride during training/evaluation.
flags.DEFINE_multi_integer('atrous_rates', None,
'Atrous rates for atrous spatial pyramid pooling.')
flags.DEFINE_integer('output_stride', 16,
'The ratio of input to output spatial resolution.')
# Change to [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] for multi-scale test.
flags.DEFINE_multi_float('eval_scales', [1.0],
'The scales to resize images for evaluation.')
# Change to True for adding flipped images during test.
flags.DEFINE_bool('add_flipped_images', False,
'Add flipped images for evaluation or not.')
flags.DEFINE_integer(
'quantize_delay_step', -1,
'Steps to start quantized training. If < 0, will not quantize model.')
# Dataset settings.
flags.DEFINE_string('dataset', 'pascal_voc_seg',
'Name of the segmentation dataset.')
flags.DEFINE_string('eval_split', 'val',
'Which split of the dataset used for evaluation')
flags.DEFINE_string('dataset_dir', None, 'Where the dataset reside.')
flags.DEFINE_integer('max_number_of_evaluations', 0,
'Maximum number of eval iterations. Will loop '
'indefinitely upon nonpositive values.')
## Pseudo_seg options
flags.DEFINE_boolean('weakly', False, 'Using image-level labeled data or not')
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
dataset = data_generator.Dataset(
dataset_name=FLAGS.dataset,
split_name=FLAGS.eval_split,
dataset_dir=FLAGS.dataset_dir,
batch_size=FLAGS.eval_batch_size,
crop_size=[int(sz) for sz in FLAGS.eval_crop_size],
min_resize_value=FLAGS.min_resize_value,
max_resize_value=FLAGS.max_resize_value,
resize_factor=FLAGS.resize_factor,
model_variant=FLAGS.model_variant,
num_readers=2,
is_training=False,
should_shuffle=False,
should_repeat=False,
with_cls=True,
cls_only=False,
output_valid=True)
tf.gfile.MakeDirs(FLAGS.eval_logdir)
tf.logging.info('Evaluating on %s set', FLAGS.eval_split)
with tf.Graph().as_default():
samples = dataset.get_one_shot_iterator().get_next()
model_options = common.ModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_of_classes},
crop_size=[int(sz) for sz in FLAGS.eval_crop_size],
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
# Set shape in order for tf.contrib.tfprof.model_analyzer to work properly.
samples[common.IMAGE].set_shape(
[FLAGS.eval_batch_size,
int(FLAGS.eval_crop_size[0]),
int(FLAGS.eval_crop_size[1]),
3])
if tuple(FLAGS.eval_scales) == (1.0,):
tf.logging.info('Performing single-scale test.')
predictions = model.predict_labels(samples[common.IMAGE], model_options,
image_pyramid=FLAGS.image_pyramid)
else:
tf.logging.info('Performing multi-scale test.')
raise NotImplementedError('Multi-scale is not supported yet!')
metric_map = {}
## Extract cls logits
if FLAGS.weakly:
_, end_points = feature_extractor.extract_features(
samples[common.IMAGE],
output_stride=model_options.output_stride,
multi_grid=model_options.multi_grid,
model_variant=model_options.model_variant,
depth_multiplier=model_options.depth_multiplier,
divisible_by=model_options.divisible_by,
reuse=tf.AUTO_REUSE,
is_training=False,
preprocessed_images_dtype=model_options.preprocessed_images_dtype,
global_pool=True,
num_classes=dataset.num_of_classes - 1)
# ResNet beta version has an additional suffix in FLAGS.model_variant, but
# it shares the same variable names with original version. Add a special
# handling here for beta version ResNet.
logits = end_points['{}/logits'.format(FLAGS.model_variant).replace(
'_beta', '')]
logits = tf.reshape(logits, [-1, dataset.num_of_classes - 1])
cls_pred = tf.sigmoid(logits)
# Multi-label classification evaluation
cls_label = samples['cls_label']
cls_pred = tf.cast(
tf.greater_equal(cls_pred, 0.5), tf.int32)
## For classification
metric_map['eval/cls_overall'] = tf.metrics.accuracy(
labels=cls_label, predictions=cls_pred)
metric_map['eval/cls_precision'] = tf.metrics.precision(
labels=cls_label, predictions=cls_pred)
metric_map['eval/cls_recall'] = tf.metrics.recall(
labels=cls_label, predictions=cls_pred)
## For segmentation branch eval
predictions = predictions[common.OUTPUT_TYPE]
predictions = tf.reshape(predictions, shape=[-1])
labels = tf.reshape(samples[common.LABEL], shape=[-1])
weights = tf.to_float(tf.not_equal(labels, dataset.ignore_label))
# Set ignore_label regions to label 0, because metrics.mean_iou requires
# range of labels = [0, dataset.num_classes). Note the ignore_label regions
# are not evaluated since the corresponding regions contain weights = 0.
labels = tf.where(
tf.equal(labels, dataset.ignore_label), tf.zeros_like(labels), labels)
predictions_tag = 'miou'
# Define the evaluation metric.
num_classes = dataset.num_of_classes
## For segmentation
metric_map['eval/%s_overall' % predictions_tag] = tf.metrics.mean_iou(
labels=labels, predictions=predictions, num_classes=num_classes,
weights=weights)
# IoU for each class.
one_hot_predictions = tf.one_hot(predictions, num_classes)
one_hot_predictions = tf.reshape(one_hot_predictions, [-1, num_classes])
one_hot_labels = tf.one_hot(labels, num_classes)
one_hot_labels = tf.reshape(one_hot_labels, [-1, num_classes])
for c in range(num_classes):
predictions_tag_c = '%s_class_%d' % (predictions_tag, c)
tp, tp_op = tf.metrics.true_positives(
labels=one_hot_labels[:, c], predictions=one_hot_predictions[:, c],
weights=weights)
fp, fp_op = tf.metrics.false_positives(
labels=one_hot_labels[:, c], predictions=one_hot_predictions[:, c],
weights=weights)
fn, fn_op = tf.metrics.false_negatives(
labels=one_hot_labels[:, c], predictions=one_hot_predictions[:, c],
weights=weights)
tp_fp_fn_op = tf.group(tp_op, fp_op, fn_op)
iou = tf.where(tf.greater(tp + fn, 0.0),
tp / (tp + fn + fp),
tf.constant(np.NaN))
metric_map['eval/%s' % predictions_tag_c] = (iou, tp_fp_fn_op)
(metrics_to_values,
metrics_to_updates) = contrib_metrics.aggregate_metric_map(metric_map)
summary_ops = []
for metric_name, metric_value in six.iteritems(metrics_to_values):
op = tf.summary.scalar(metric_name, metric_value)
op = tf.Print(op, [metric_value], metric_name)
summary_ops.append(op)
summary_op = tf.summary.merge(summary_ops)
summary_hook = contrib_training.SummaryAtEndHook(
log_dir=FLAGS.eval_logdir, summary_op=summary_op)
hooks = [summary_hook]
num_eval_iters = None
if FLAGS.max_number_of_evaluations > 0:
num_eval_iters = FLAGS.max_number_of_evaluations
if FLAGS.quantize_delay_step >= 0:
contrib_quantize.create_eval_graph()
contrib_tfprof.model_analyzer.print_model_analysis(
tf.get_default_graph(),
tfprof_options=contrib_tfprof.model_analyzer
.TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
contrib_tfprof.model_analyzer.print_model_analysis(
tf.get_default_graph(),
tfprof_options=contrib_tfprof.model_analyzer.FLOAT_OPS_OPTIONS)
contrib_training.evaluate_repeatedly(
checkpoint_dir=FLAGS.checkpoint_dir,
master=FLAGS.master,
eval_ops=list(metrics_to_updates.values()),
max_number_of_evaluations=num_eval_iters,
hooks=hooks,
eval_interval_secs=FLAGS.eval_interval_secs)
if __name__ == '__main__':
flags.mark_flag_as_required('checkpoint_dir')
flags.mark_flag_as_required('eval_logdir')
flags.mark_flag_as_required('dataset_dir')
tf.app.run()