-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathtrain_punc.py
43 lines (42 loc) · 2.31 KB
/
train_punc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from utils.user_config import UserConfig
from punc_recover.trainer import punc_trainer
from punc_recover.dataloaders.punc_dataloader import Punc_DataLoader
import tensorflow as tf
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
class Punc_Trainer():
def __init__(self,config,):
self.dg = Punc_DataLoader(config)
self.runner = punc_trainer.PuncTrainer(config)
self.runner.set_total_train_steps(self.dg.get_per_epoch_steps() * config['running_config']['num_epochs'])
self.runner.compile()
def train(self):
option = tf.data.Options()
option.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA
train_datasets = tf.data.Dataset.from_generator(self.dg.generator,
self.dg.return_data_types(),
self.dg.return_data_shape(),
args=(True,)).with_options(option)
eval_datasets = tf.data.Dataset.from_generator(self.dg.generator,
self.dg.return_data_types(),
self.dg.return_data_shape(),
args=(False,)).with_options(option)
self.runner.set_datasets(train_datasets, eval_datasets)
logging.warning('Training Start, first 5 steps will be slow........')
while 1:
self.runner.fit(epoch=self.dg.epochs)
if self.runner._finished():
self.runner.save_checkpoint()
logging.info('Finish training!')
break
if __name__ == '__main__':
import argparse
parse = argparse.ArgumentParser()
parse.add_argument('--data_config', type=str, default='./punc_recover/configs/data.yml',
help='the lm data config path')
parse.add_argument('--model_config', type=str, default='./punc_recover/configs/punc_settings.yml',
help='the lm model config path')
args = parse.parse_args()
punc_config = UserConfig(args.punc_config,args.punc_config)
train=Punc_Trainer(punc_config)
train.train()