Skip to content

Latest commit

 

History

History
201 lines (158 loc) · 9.27 KB

README.md

File metadata and controls

201 lines (158 loc) · 9.27 KB

Classification models 1D Zoo - Keras and TF.Keras

This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNets, VGG, etc. It also contains weights obtained by converting ImageNet weights from the same 2D models. It can be useful for classification of audio or some timeseries data.

This repository is based on great classification_models repo by @qubvel

Architectures:

Installation

pip install classification-models-1D

Examples

Loading model:
from classification_models_1D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet18')
model = ResNet18(input_shape=(224*224, 2), weights='imagenet')

All possible nets for Classifiers.get() method:

Based on Conv1D: 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet101', 'seresnet152', 'seresnext50','seresnext101', 'senet154', 'resnext50', 'resnext101', 'vgg16', 'vgg19', 'densenet121', 'densenet169', 'densenet201', 'mobilenet', 'mobilenetv2', 'inceptionresnetv2', 'inceptionv3', 'EfficientNetB0', 'EfficientNetB1', 'EfficientNetB2', 'EfficientNetB3', 'EfficientNetB4', 'EfficientNetB5', 'EfficientNetB6', 'EfficientNetB7', 'EfficientNetV2B0', 'EfficientNetV2B1', 'EfficientNetV2B2', 'EfficientNetV2B3', 'EfficientNetV2S', 'EfficientNetV2M', 'EfficientNetV2L'

Non-standard nets (Conv1D): resnet18_pool8

Based on spectrograms and Conv2D: 'EfficientNetB0_spectre', 'EfficientNetB1_spectre', 'EfficientNetB2_spectre', 'EfficientNetB3_spectre', 'EfficientNetB4_spectre', 'EfficientNetB5_spectre', 'EfficientNetB6_spectre', 'EfficientNetB7_spectre'

Convert imagenet weights (2D -> 1D)

Code to convert 2D imagenet weights to 1D variant is available here: convert_imagenet_weights_to_1D_models.py.

How to choose input shape

If initial 2D model had shape (224, 224, 3) then you can use shape (W, 3) where W ~= 224*224, so something like (224*224, 2) will be ok.

Additional features

  • Default pooling/stride size for 1D models set equal to 4 to match (2, 2) pooling for 2D nets. Kernel size by default is 9 to match (3, 3) kernels. You can change it for your needs using parameters stride_size and kernel_size. Example:
from classification_models_1D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet18')
model = ResNet18(
   input_shape=(224*224, 2),
   stride_size=6,
   kernel_size=3, 
   weights=None
)
  • You can set different pooling for each pooling block. For example you don't need pooling at first convolution. You can do it using tuple as value for stride_size:
from classification_models_1D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet34')
model = ResNet18(
   input_shape=(65536, 2),
   stride_size=(1, 4, 4, 8, 8),
   kernel_size=9,
   weights='imagenet'
)
  • For some models like (resnet, resnext, senet, vgg16, vgg19, densenet) it's possible to change number of blocks/poolings. For example if you want to switch to pooling/stride = 2 but make more poolings overall. You can do it like that:
from classification_models_1D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet34')
model = ResNet18(
   input_shape=(224*224, 2),
   include_top=False,
   weights=None,
   stride_size=(2, 4, 4, 4, 2, 2, 2, 2),
   kernel_size=3,
   repetitions=(2, 2, 2, 2, 2, 2, 2),
   init_filters=16,
)

Note: Since number of filters grows 2 times, you can set initial number of filters with init_filters parameter.

Pretrained weights

Imagenet weights

Imagenet weights available for all models except ('inceptionresnetv2', 'inceptionv3'). They available only for kernel_size == 3 or kernel_size == 9 and 2 channel input (e.g. stereo sound). Weights were converted from 2D models to 1D variant. Weights can be loaded with any pooling scheme.

Audioset weights

AudioSet is large audio dataset. It's multilabel classifcation on 527 different classes. All available data was used for training. It's around 1.9 millions of audio tracks. Each track is around 10 seconds of length.

  • AudioSet weights were obtained for default parameters kernel_size = 9, stride_size = (4, 4, 4, 4, 4).
  • Random class sampling was used during training. To form batch first choose random class, then choose random sample, which contains this class.
  • Validation data can be found here: AudioSet validation.

Quality table below:

Model name Eval mAP (macro) Eval mAP (micro) Eval AUC (macro) Eval AUC (local) Eval LL Eval Acc (Macro) Eval Acc (per sample)
resnet18 0.2812 0.3712 0.9541 0.9666 8.5059 0.2401 0.2372
resnet34 0.3350 0.4390 0.9594 0.9705 8.1962 0.2769 0.2787
EfficientNetB5 0.3514 0.4725 0.9662 0.9767 8.0650 0.2832 0.2873
EfficientNetV2L 0.3307 0.4559 0.9608 0.9726 8.3544 0.2642 0.2648
resnet18_pool8 0.3125 0.4318 0.9602 0.9718 8.3810 0.2596 0.2576
EfficientNetB5_spectre 0.3801 0.5056 0.9695 0.9787 7.7415 0.3167 0.3295
Ensemble (EfficientNetB5 + EfficientNetB5_spectre) 0.4046 0.5215 0.9737 0.9821 7.4294 0.3059 0.3104

Model comparison list

Model name Number of params (millions) Req. memory for 1 sample (GB) Time proc one image (sec)
resnet18 11 0.416 0.1450
resnet34 21 0.639 0.2680
resnet50 23 1.380 0.3950
resnet101 42 2.094 0.5375
resnet152 58 2.946 0.7941
seresnet18 11 0.441 0.1283
seresnet34 21 0.685 0.2287
seresnet50 26 1.534 0.3108
seresnet101 47 2.368 0.5387
seresnet152 64 3.366 0.7853
seresnext50 25 2.202 0.5495
seresnext101 47 3.345 0.9465
senet154 113 6.132 2.7225
resnext50 23 2.015 0.7168
resnext101 42 3.037 0.9152
vgg16 14 0.552 0.6331
vgg19 20 0.614 0.7746
densenet121 7 1.656 0.4552
densenet169 12 2.010 0.5861
densenet201 18 2.595 0.7707
mobilenet 3 0.563 0.1101
mobilenetv2 2 0.722 0.1391
inceptionresnetv2 80 2.046 0.7017
inceptionv3 41 0.833 0.3453
EfficientNetB0 3 0.825 0.2259
EfficientNetB1 6 1.142 0.3066
EfficientNetB2 7 1.198 0.3217
EfficientNetB3 10 1.590 0.4202
EfficientNetB4 17 2.082 0.5470
EfficientNetB5 27 2.870 0.7400
EfficientNetB6 40 3.685 0.9357
EfficientNetB7 63 4.955 1.2509
EfficientNetV2B0 5 0.535 0.1710
EfficientNetV2B1 6 0.698 0.2207
EfficientNetV2B2 8 0.759 0.2526
EfficientNetV2B3 12 0.958 0.3317
EfficientNetV2S 20 1.396 0.4392
EfficientNetV2M 53 2.340 0.7458
EfficientNetV2L 117 4.205 1.3081
EfficientNetB0_spectre 4 0.029 0.1647
EfficientNetB1_spectre 6 0.039 0.2184
EfficientNetB2_spectre 7 0.043 0.2220
EfficientNetB3_spectre 10 0.055 0.2915
EfficientNetB4_spectre 17 0.081 0.3644
EfficientNetB5_spectre 28 0.121 0.4704
EfficientNetB6_spectre 40 0.168 0.5964
EfficientNetB7_spectre 64 0.254 0.7912
  • Note: Required memory is for input shape of (441000, 2) - it's for classification of 10 seconds stereo audio (like in AudioSet).

Related repositories

ToDo List

  • Create pretrained weights obtained on AudioSet