-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
433 lines (373 loc) · 19.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
"""
[Title] run.py
[Usage] The file to train a model and save model information.
[Functions to be added]
[ ] iterative training
[ ] sparsity-aware initialization
[ ] random pruning (random mask?)
[ ] SNIP pruning
"""
from loader import load_dataset
from optim import Model
from helper import pruner, plotter, utils
from pathlib import Path
import os
import time
import torch
import random
import logging
import argparse
import numpy as np
# ----------- Handle the TPU Training Framework ----------- #
try:
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
except:
pass
# --------------------------------------------------------- #
# ############################################
# 1. Preparation
# ############################################
# ===========================================
# 1.1. Parameters
# ===========================================
# Initialize the parser
parser = argparse.ArgumentParser()
# Arguments for general training mechanism
# Sparse finetuning is dense-prune-finetune, and sparse training is prune-finetune.
parser.add_argument('-m', '--mode', type=str, default='dense',
help='Set the training mode',
choices=['dense', 'sparse-finetune',
'sparse-scratch', 'lottery'])
parser.add_argument('-pm', '--prune_method', type=str, default='l1',
help='Set the training mode',
choices=['l1'])
parser.add_argument('-pr', '--prune_ratio', type=float, default=0.9,
help='The ratio for sparse training')
parser.add_argument('-pl', '--prune_last', type=int, default=0,
help='0 if not pruning for the last layer, else 1.')
parser.add_argument('-rr', '--results_root', type=str, default='./results',
help='The directory to save results.')
# Arguments for loading the pre-trained model
parser.add_argument('-lp', '--load_pretrain', type=int, default=1,
help='To finetune, 1 if load a trained dense, else train a new dense')
parser.add_argument('-pp', '--pretrain_model_path', type=str,
default='./results/loader/dense_folder/model.tar',
help='The path for a pretrained dense model.')
parser.add_argument('-tp', '--lottery_model_path', type=str,
default='./results/loader/dense_folder/state_dicts/epoch_0.pkl',
help='The path for a pretrained dense model.')
# Arguments for loading datasets
parser.add_argument('-ln', '--loader_name', type=str, default='toy',
help='The name for your dataset.',
choices=['toy', 'mnist', 'cifar10', 'cifar100',
'fmnist', 'cifar100_tpu',
'cifar10_noisy', 'fmnist_noisy', 'tiny_imagenet'])
parser.add_argument('-rt', '--root', type=str, default='./data/',
help='The root path for stored data.')
parser.add_argument('-fn', '--filename', type=str, default='toy',
help='The filename for your data, e.g., toy, MNIST or CIFAR10.')
parser.add_argument('-ts', '--test_size', type=float, default=0.2,
help='The test split ratio for the toy dataset.')
parser.add_argument('-rs', '--random_state', type=int, default=42,
help='Use 0 to let the machine set a random random seed for you.')
parser.add_argument('-dl', '--download', type=int, default=0,
help='1 if you need download the dataset, otherwise 0.')
# Arguments for setting network
parser.add_argument('-nt', '--net_name', type=str, default='mlp',
help='The name for your network',
choices=['mlp', 'alexnet', 'preresnet', 'resnet',
'densenet', 'vgg11', 'vgg11_bn', 'vgg13',
'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19',
'vgg19_bn', 'mnist_lenet', 'mnist_alexnet'])
parser.add_argument('-in', '--in_dim', type=int, default=12,
help='The feature dimension for the input data X.')
parser.add_argument('-ot', '--out_dim', type=int, default=2,
help='The number of classes of the output data y.')
parser.add_argument('-ha', '--hidden_act', type=str, default='tanh',
help='The activation for hidden layers, e.g., tanh, relu, softmax, sigmoid.')
parser.add_argument('-oa', '--out_act', type=str, default='softmax',
help='The activation for the output layer, e.g., softmax, sigmoid.')
parser.add_argument('-hd', '--hidden_dims', type=str, default='10-7-5-4-3',
help='The hidden dimensions for MLP; using hypen to connect numbers.')
parser.add_argument('-dp', '--depth', type=int, default=32,
help='The depth for preresnet or densenet.')
parser.add_argument('-wf', '--widen_factor', type=int, default=4,
help='The widen factor for resnet.')
parser.add_argument('-dr', '--dropRate', type=int, default=0,
help='The drop rate for dense net.')
parser.add_argument('-gr', '--growthRate', type=int, default=12,
help='The growth rate for dense net.')
parser.add_argument('-cr', '--compressionRate', type=int, default=1,
help='The compression rate for densenet.')
# Arguments for the model
parser.add_argument('-im', '--init_method', type=str, default='kaiming',
help='Currently support kaiming, xavier, and none.')
parser.add_argument('-on', '--optimizer_name', type=str, default='adam',
help='Currently support sgd or adam.')
parser.add_argument('-mm', '--momentum', type=float, default=0.9,
help='The momentum of the optimizer.')
parser.add_argument('-lr', '--lr', type=float, default=0.0004,
help='The learning rate for optimization.')
parser.add_argument('-ls', '--lr_schedule', type=str, default='stepwise',
help='Currently support stepwise or exponential.')
parser.add_argument('-lm', '--lr_milestones', type=str, default='50-100',
help='The milestones for stepwise lr scheduler.')
parser.add_argument('-lg', '--lr_gamma', type=float, default=0.1,
help='The decay rate for learning rate.')
parser.add_argument('-ne', '--n_epochs', type=int, default=500,
help='The number of training epochs.')
parser.add_argument('-bs', '--batch_size', type=int, default=256,
help='The batch size for training.')
parser.add_argument('-wt', '--weight_decay', type=float, default=1e-6,
help='The decay rate for weight.')
parser.add_argument('-dv', '--device', type=str, default='cpu',
choices=['cpu', 'cuda', 'tpu'])
parser.add_argument('-nj', '--n_jobs_dataloader', type=int, default=0,
help='The number of workers for jobloader; default is just 0.')
# Arguments for the loss regularizer
parser.add_argument('-rp', '--reg_type', type=str, default='none',
choices=['none', 'jacobian'],
help='The type of loss regularization.')
parser.add_argument('-rw', '--reg_weight', type=float, default='0.01',
help='The coefficient for the loss regularizer.')
# Arguments for the subset selection algorithm
parser.add_argument('-sub', '--train_subset', type=int, default=0,
help='0 if use subset selection algorithm in training.')
parser.add_argument('-subr', '--subset_ratio', type=float, default=0.1,
help='The ratio to sample from the pool.')
parser.add_argument('-subm', '--subset_method', type=str, default='loss',
help='The method for subset selection.',
choices=['default', 'uniform', 'loss', 'fisher',
'reducible_loss', 'reducible_fisher'])
# Arguments for calculating fisher metric
parser.add_argument('-fd', '--fisher_method', type=str, default='ours',
help='Ours is written by us; nngeometry is to use existing package.',
choices=['vmap', 'ours', 'nngeometry']) # nngeometry may not work on the pruned
parser.add_argument('-fm', '--fisher_metric', type=str, default='fim_monte_carlo',
help='fim if closed-form results, or fim_monte_carlo with samples.')
parser.add_argument('-ms', '--monte_carlo_samples', type=int, default=1000,
help='The number of monte carlo trials for sampling X.')
parser.add_argument('-mt', '--monte_carlo_trials', type=int, default=5,
help='The number of monte carlo trials for sampling predicted y.')
parser.add_argument('-bf', '--batch_size_fisher', type=int, default=1,
help='Must be set to be 1 for ours, see utils.get_fisher_ours().')
# Arguments for the indicators of saving things or training config
parser.add_argument('-sb', '--save_best', type=int, default=1,
help='1 if save the best model, else 0.')
parser.add_argument('-sf', '--save_fisher', type=int, default=1,
help='1 if save fisher, else 0.')
parser.add_argument('-ss', '--save_snr', type=int, default=1,
help='1 if save snr, else 0.')
# Arguments for noisy setting
parser.add_argument('-tn', '--train_noisy', type=int, default=0,
help='1 if training in noisy setting, else 0.')
parser.add_argument('-nm', '--noise_method', type=str, default='symmetric',
help='Check the noisy loader for details.')
parser.add_argument('-nr', '--noise_ratio', type=float, default=0.2,
help='The ratio of flipped labels in the data set.')
# Arguments for loading pretrain (a dense model) path
parser.add_argument('-lrp', '--lr_pretrain', type=float, default=0.0004)
parser.add_argument('-lsp', '--lr_schedule_pretrain', type=str, default='stepwise')
parser.add_argument('-lmp', '--lr_milestones_pretrain', type=str, default='50-100')
parser.add_argument('-lgp', '--lr_gamma_pretrain', type=float, default=0.1)
parser.add_argument('-nep', '--n_epochs_pretrain', type=int, default=0)
parser.add_argument('-bsp', '--batch_size_pretrain', type=int, default=256)
# Arguments for resuming training
# Some clusters have a 4-hour GPU usage limit
# If your training is interrupted, you may just resume it
# by telling the code the epoch to resume
# Notice no other parameter needed to change
parser.add_argument('-ree', '--resume_epoch', type=int, default=0,
help='The epoch to resume the training')
p = parser.parse_args()
# ===========================================
# 1.2. Setup random states and devices
# ===========================================
# Set a random random seed
if not p.random_state:
random_state = np.random.randint(low=0,
high=np.iinfo(np.int32).max,
size=1)[0]
# Use the input argument as the random state
else:
random_state = p.random_state
random.seed(random_state)
torch.manual_seed(random_state)
np.random.seed(random_state)
# Set up device
if p.device == 'tpu':
import torch_xla.core.xla_model as xm
device = xm.xla_device()
else:
device = p.device # Just keep it as string for convenience
# ===========================================
# 1.3. Define Path
# ===========================================
# Get the time
time_now = time.ctime().split()[1:4]
# Configure the network string for path
net_str = f'{p.net_name}'
if p.net_name == 'mlp': net_str += f'-{p.hidden_act}-{p.hidden_dims}'
if p.net_name == 'resnet': net_str += f'-{p.depth}-{p.widen_factor}'
if p.net_name == 'densenet': net_str += f'-{p.dropRate}-{p.growthRate}-{p.compressionRate}'
# Configure the name for noisy training
noise_str = ''
if p.train_noisy:
noise_str += f'noise_{p.noise_method}_{p.noise_ratio}_'
# Configure the pruning specifics for the folder name
prune_str = ''
if p.mode != 'dense':
prune_str += f'method_{p.prune_method}_ratio_{p.prune_ratio}_'
# Configure other optimization specifics for the folder name
epoch_str = f'epochs_{p.n_epochs}_'
batch_str = f'batch_{p.batch_size}_'
optim_str = f'{p.optimizer_name}_'
optim_str += f'lr_{p.lr}-{p.lr_schedule}-{p.lr_milestones}-{p.lr_gamma}_'
optim_str += f'mm_{p.momentum}_w_decay_{p.weight_decay}_init_{p.init_method}_'
seed_str = f'seed_{random_state}'
time_str = f'time_{time_now[0]}-{time_now[1]}-{time_now[2]}'
# Set the folder name
folder_name = f'{noise_str}{prune_str}{epoch_str}{batch_str}{optim_str}{seed_str}'
# Append the folder name with the regularzier type
if p.reg_type != 'none':
folder_name += f'_reg_{p.reg_type}-{p.reg_weight}'
# Append the folder name with the subset selection algorithm type
if p.train_subset:
folder_name += f'_train_subset-{p.subset_ratio}-{p.subset_method}'
# Set the folder name for sparse training with dense pretraining
if p.mode != 'dense':
folder_name += f'_epoch_pre_{p.n_epochs_pretrain}'
folder_name += f'_batch_pre_{p.batch_size_pretrain}'
folder_name += f'_lr_pre_{p.lr_pretrain}-{p.lr_schedule_pretrain}'
folder_name += f'-{p.lr_milestones_pretrain}-{p.lr_gamma_pretrain}'
prune_indicator = 1
else:
prune_indicator = 0
# Uncomment the following if you want the folder name with time string
# folder_name += f'_{time_str}'
# Set the final path
final_path = Path(p.results_root) / f'{p.loader_name}'\
/ net_str / f'{p.mode}' / folder_name
# Set the individual path for files inside final path
log_path = final_path / 'training.log'
model_path = final_path / 'model.tar'
results_path = final_path / 'results.pkl'
config_path = final_path / 'config.json'
state_dicts_path = final_path / 'state_dicts'
resume_path = state_dicts_path / f'epoch_{p.resume_epoch}.pkl'
fisher_plot_path = final_path / f'fisher_{p.mode}.pdf'
grad_plot_path = final_path / f'gradients_{p.mode}.pdf'
weight_plot_path = final_path / f'weights_{p.mode}.pdf'
performance_plot_path = final_path / f'performance_{p.mode}.pdf'
performance_noisy_plot_path = final_path / f'performance_noisy_{p.mode}.pdf'
grad_plot_smoothed_path = final_path / f'gradients_smoothed_{p.mode}.pdf'
grad_plot_caption = str(final_path)
if not os.path.exists(final_path): os.makedirs(final_path)
if not os.path.exists(state_dicts_path): os.makedirs(state_dicts_path)
# ===========================================
# 1.4. Setup Logger
# ===========================================
logger = utils.set_logger(log_path)
logger.info(f'Random state: {random_state}')
logger.info(final_path)
logger.info(time_str)
# ############################################
# 2. Model Training
# ############################################
# ---------------------- Configure dataset ---------------------- #
dataset = load_dataset(p.loader_name,
p.root,
p.filename,
p.test_size,
p.noise_method,
p.noise_ratio,
random_state,
p.download)
# ------------------ Set up model with trainer ------------------ #
model = Model()
model.set_network(p.net_name, p.in_dim, p.out_dim, p.hidden_act,
p.out_act, p.hidden_dims, p.depth, p.widen_factor,
p.dropRate, p.growthRate, p.compressionRate)
# ---------------------- Set training mode (resuming) ---------------------- #
if p.resume_epoch:
logger.info(f'Resuming training from {resume_path}.')
if p.mode == 'dense':
# Directly load the previous results and net dict
model.load_net_dict(resume_path, device)
if p.mode in ['sparse-scratch', 'sparse-finetune', 'lottery']:
# Just to make sure the net dict keys are matched
pruner.global_prune(model.net, p.prune_method, p.prune_ratio, p.prune_last)
# Load the previous results and net dict
model.load_net_dict(resume_path, device)
# ---------------------- Set training mode (non-resuming) ---------------------- #
if not p.resume_epoch:
# Option 1: Dense training
if p.mode == 'dense':
# Initialize the network
model.init_network(p.init_method)
# Option 2: Sparse finetuning / sparse training from scratch
if p.mode in ['sparse-scratch', 'sparse-finetune', 'lottery']:
assert p.load_pretrain, 'for now, please pre-train a dense net to get mask.'
# ---------------------- A. Sparse Finetuning ---------------------- #
# Load the pre-trained model path
logger.info(f'Loading from {p.pretrain_model_path}.')
model.load_net_dict(p.pretrain_model_path, device)
# Prune the pretrained network
pruner.global_prune(model.net, p.prune_method, p.prune_ratio, p.prune_last)
# ----------------- B. Sparse Training from Scratch ---------------- #
# Re-intialize the weights if you choose sparse training from scratch
if p.mode == 'sparse-scratch':
print('Initialize for sparse training from scratch.')
model.init_network(p.init_method)
# ------------------------ C. Lottery Tickets ---------------------- #
# Re-use the dense weight at initialization for lottery tickets
if p.mode == 'lottery':
# Create a new model instance for lottery
lottery_model = Model()
lottery_model.set_network(p.net_name, p.in_dim, p.out_dim,
p.hidden_act, p.out_act, p.hidden_dims,
p.depth, p.widen_factor, p.dropRate,
p.growthRate, p.compressionRate)
# Use the initialization of the dense model
logger.info(f'Loading from {p.lottery_model_path}.')
lottery_model.load_net_dict(p.lottery_model_path, device)
# Prune the lottery model with the mask from the pretrained model
pruner.global_prune_custom_mask(lottery_model.net, model.net)
# Cover the name for the model
model = lottery_model
# ---------------------- Training the model --------------------- #
model.train(dataset, p.optimizer_name, p.momentum, p.lr, p.lr_schedule,
p.lr_milestones, p.lr_gamma, p.n_epochs, p.batch_size,
p.weight_decay, device, p.n_jobs_dataloader,
p.fisher_metric, p.save_fisher, p.save_snr,
p.train_noisy, prune_indicator, p.reg_type, p.reg_weight,
final_path, p.train_subset, p.subset_ratio, p.subset_method,
p.resume_epoch)
# ############################################
# 3. Save Statistics
# ############################################
# Save net dicts, results and configs
model.save_net_dict(model_path, p.save_best)
model.save_config(config_path)
# Handle the net dicts saved by TPU
if p.device == 'tpu':
utils.save_net_dicts_tpu(model.net, final_path, p.n_epochs, device)
# ############################################
# 4. Plot for gradients
# ############################################
# Annouce the plotting stage
logger.info('Stay tuned: your little Van Gogh is drawing...')
# Save the performance plot
plotter.plot_performance(final_path, performance_plot_path, grad_plot_caption)
if p.save_snr:
plotter.plot_gradients(final_path, grad_plot_path, grad_plot_caption, p.save_fisher, 0.0)
plotter.plot_gradients(final_path, grad_plot_smoothed_path, grad_plot_caption, p.save_fisher, 0.6) # Smoothed lines
plotter.plot_weights(final_path, weight_plot_path, grad_plot_caption, 0.0)
# Plot fisher information if saved
if p.save_fisher:
plotter.plot_fisher(final_path, fisher_dict_path, fisher_plot_path)
if p.train_noisy:
plotter.plot_performance_noisy(final_path, performance_noisy_plot_path)
logger.info('All done. Good luck!')
logger.info(str(final_path))