-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
194 lines (152 loc) · 6.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
import torchvision.transforms as standard_transforms
from HMoDE import *
# from func import relloss
import os
from datasets.SHHA.loading_data import loading_data
from datasets.SHHA.setting import cfg_data
from misc.timer import Timer
exp_name = cfg_data.EXP_NAME
log_txt = cfg_data.EXP_PATH + '/' + exp_name + '.txt'
if not os.path.exists(cfg_data.EXP_PATH):
os.mkdir(cfg_data.EXP_PATH)
train_record = {'best_mae': 1e20, 'mse': 1e20, 'corr_loss': 0, 'corr_epoch': -1, 'best_model_name': ''}
_t = {'iter time': Timer(), 'train time': Timer(), 'val time': Timer()}
rand_seed = cfg_data.SEED
if rand_seed is not None:
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed(rand_seed)
train_set, train_loader, val_set, val_loader, restore_transform = loading_data()
def main():
load = False
begin = 0
os.environ['CUDA_VISIBLE_DEVICES'] = cfg_data.GPU_ID
torch.backends.cudnn.benchmark = True
net = HMoDE(True)
net = nn.DataParallel(net)
net = net.cuda()
net.train()
optimizer = optim.Adam(net.parameters(), lr=2e-5)
stepLR = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.5)
i_tb = 0
if load:
checkpoint = torch.load(os.path.join(cfg_data.EXP_PATH, 'latestmodel.pth'))
net.load_state_dict(checkpoint['model'])
begin = checkpoint['epoch'] + 1
i_tb = checkpoint['i_tb']
optimizer.load_state_dict(checkpoint['optimizer'])
train_record['best_mae'] = checkpoint['record']['best_mae']
train_record['mse'] = checkpoint['record']['mse']
train_record['corr_epoch'] = checkpoint['record']['corr_epoch']
train_record['corr_loss'] = checkpoint['record']['corr_loss']
for epoch in range(begin, cfg_data.MAX_EPOCH):
_t['train time'].tic()
i_tb, model_path = train(train_loader, net, optimizer, epoch, i_tb)
_t['train time'].toc(average=False)
print('train time of one epoch: {:.2f}s'.format(_t['train time'].diff))
if epoch + 1 >= 100:
_t['val time'].tic()
validate(val_loader, val_set, epoch)
_t['val time'].toc(average=False)
print('val time of one epoch: {:.2f}s'.format(_t['val time'].diff))
if (epoch+1) == 100:
stepLR.step()
def train(train_loader, net, optimizer, epoch, i_tb):
net.train()
mseloss = nn.MSELoss(reduction='sum').cuda()
for i, data in enumerate(train_loader, 0):
_t['iter time'].tic()
img, gt_map = data
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
amp_gt = (gt_map>(1e-5*cfg_data.LOG_PARA)).float().unsqueeze(1)
# predicted maps, predicted attention map and expert importance loss
pred_maps, amp, imp_loss = net(img)
optimizer.zero_grad()
loss = 0.
rel_loss = 0.
for j in range(len(pred_maps)):
# density loss
loss += (2**(int(j / 3))) * mseloss(pred_maps[j], gt_map)
# relative loss
# rel_loss += (2**(int(i / 3))) * relloss(pred_maps[i], gt_map)
# attention loss
amp = nn.functional.interpolate(amp, amp_gt.shape[2:], mode='nearest')
cross_entropy_loss = (amp_gt * torch.log(amp+1e-10) + (1 - amp_gt) * torch.log(1 - amp+1e-10)) * -1
# total objectives, loss weights can be adjusted
loss = loss + rel_loss + torch.sum(imp_loss) + torch.sum(cross_entropy_loss)
loss = loss / pred_maps[0].shape[0]
loss.backward()
optimizer.step()
if (i + 1) % cfg_data.PRINT_FREQ == 0:
loss = mseloss(pred_maps[0].squeeze(), gt_map)
i_tb = i_tb + 1
_t['iter time'].toc(average=False)
print('[ep %d][it %d][loss %.8f][LR %.8f][%.2fs]' % \
(epoch + 1, i + 1, torch.sum(loss).item(), optimizer.state_dict()['param_groups'][0]['lr'], _t['iter time'].diff))
print(' [gt: %.1f pred: %.6f]' % (
gt_map[0].sum() / cfg_data.LOG_PARA, pred_maps[0][0].sum().item() / cfg_data.LOG_PARA))
# save model
to_saved_weight = []
if len(cfg_data.GPU_ID) > 1:
to_saved_weight = net.module.state_dict()
else:
to_saved_weight = net.state_dict()
state = {'epoch': epoch, 'i_tb': i_tb, 'model': to_saved_weight, 'optimizer': optimizer.state_dict(),
'record': train_record}
model_path = os.path.join(cfg_data.EXP_PATH, 'latestmodel.pth')
torch.save(state, model_path)
return i_tb, model_path
def validate(val_loader, val_set, epoch):
torch.cuda.empty_cache()
mseloss = nn.MSELoss(reduction='sum').cuda()
net = HMoDE(False)
net.load_state_dict(torch.load(os.path.join(cfg_data.EXP_PATH, 'latestmodel.pth'))['model'])
net.cuda()
net.eval()
print('=' * 50)
val_loss = []
mae = 0.0
mse = 0.0
for vi, data in enumerate(val_loader, 0):
img, gt_map = data
# pdb.set_trace()
with torch.no_grad():
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
pred_map = net(img)[0]
loss = mseloss(pred_map, gt_map)
val_loss.append(loss.item())
pred_map = pred_map.data.cpu().numpy() / cfg_data.LOG_PARA
gt_map = gt_map.data.cpu().numpy() / cfg_data.LOG_PARA
gt_count = np.sum(gt_map)
pred_cnt = np.sum(pred_map)
mae += abs(gt_count - pred_cnt)
mse += ((gt_count - pred_cnt) * (gt_count - pred_cnt))
mae = mae / val_set.get_num_samples()
mse = np.sqrt(mse / val_set.get_num_samples())
loss = np.mean(val_loss)
if mae < train_record['best_mae']:
train_record['best_mae'] = mae
train_record['mse'] = mse
train_record['corr_epoch'] = epoch + 1
train_record['corr_loss'] = loss
to_saved_weight = net.state_dict()
state = {'model': to_saved_weight}
model_path = os.path.join(cfg_data.EXP_PATH, 'best_model.pth')
torch.save(state, model_path)
print('=' * 50)
print(exp_name)
print(' ' + '-' * 20)
print(' [mae %.1f mse %.1f], [val loss %.8f]' % (mae, mse, loss))
print(' ' + '-' * 20)
print('[best] [mae %.1f mse %.1f], [val loss %.8f], [epoch %d]' % (
train_record['best_mae'], train_record['mse'], train_record['corr_loss'], train_record['corr_epoch']))
print('=' * 50)
if __name__ == '__main__':
main()