-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetrics.py
41 lines (32 loc) · 1.3 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import torch.nn as nn
import sys
from functools import reduce
class JointLoss(nn.Module):
def __init__(self, alpha, beta):
super(JointLoss, self).__init__()
self.MSELoss = nn.MSELoss(size_average=False)
self.BCELoss = nn.BCELoss(size_average=True)
self.alpha = alpha
self.beta = beta
def forward(self, x, gt_map, target_map):
mse = self.MSELoss(x, gt_map) * self.alpha
bce = self.BCELoss(x, target_map) * self.beta
# sys.stdout.write("mse loss = {}, bce loss = {}\r".format(mse, bce))
sys.stdout.flush()
return mse + bce
class MSEScalarLoss(nn.Module):
def __init__(self):
super(MSEScalarLoss, self).__init__()
def forward(self, x, gt_map):
return torch.pow(x.sum() - gt_map.sum(), 2) / (reduce(lambda a,b:a * b, x.shape))
class AEBatch(nn.Module):
def __init__(self):
super(AEBatch, self).__init__()
def forward(self, estimated_density_map, gt_num):
return torch.abs(torch.sum(estimated_density_map, dim=(1, 2, 3)) - gt_num)
class SEBatch(nn.Module):
def __init__(self):
super(SEBatch, self).__init__()
def forward(self, estimated_density_map, gt_num):
return torch.pow(torch.sum(estimated_density_map, dim=(1, 2, 3)) - gt_num, 2)