forked from vLAR-group/RangeUDF
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_scannet.py
70 lines (52 loc) · 2.43 KB
/
gen_scannet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import networks.rangeudf as model
import datasets.dataloader_scannet as voxelized_data
from networks.generation import Generator
import torch
import config as cfg_loader
import os
import numpy as np
from tqdm import tqdm
import pickle
cfg = cfg_loader.get_config()
device = torch.device("cuda")
dataset = voxelized_data.VoxelizedDataset(cfg,
'test',
pointcloud_samples=cfg.num_points,
data_path=cfg.data_dir,
split_file=cfg.split_file,
batch_size=1,
num_sample_points=cfg.num_sample_points_generation,
num_workers=1,
sample_distribution=cfg.sample_ratio,
sample_sigmas=cfg.sample_std_dev)
net = model.D3F(cfg)
cfg_pth='experiments/{}/{}/test_conf_{}.pkl'.format(cfg.exp_name,cfg.log_dir,cfg.ckpt)
with open(cfg_pth,'wb') as f:
pickle.dump(cfg,f)
gen = Generator(net, cfg, cfg.exp_name, cfg.log_dir, checkpoint=cfg.ckpt, device=device)
if cfg.log_dir is None:
out_path = './experiments/{}/evaluation/'.format(cfg.exp_name)
else:
out_path = './experiments/{}/{}/evaluation/'.format(cfg.exp_name, cfg.log_dir)
def gen_iterator(out_path, dataset, gen_p):
global gen
gen = gen_p
if not os.path.exists(out_path):
os.makedirs(out_path)
print(out_path)
loader = dataset.get_loader(shuffle=False)
for i, data in tqdm(enumerate(loader)):
path = os.path.normpath(data['path'][0])
print(path)
room_name = path.split('/')[1]
scene_name = path.split('/')[-1]
export_path = out_path + '/{}/'.format(cfg.ckpt) + room_name + '/'
if os.path.exists(export_path):
print('Path exists - skip! {}'.format(export_path))
pass
else:
os.makedirs(export_path)
for num_steps in [7]:
sparse_point_cloud, dense_point_cloud, duration = gen.generate_point_cloud(data, num_steps)
np.savez(export_path + '{}_dense_point_cloud_{}'.format(scene_name, num_steps), sparse_point_cloud=sparse_point_cloud, dense_point_cloud=dense_point_cloud,duration=duration)
gen_iterator(out_path, dataset, gen)