forked from vLAR-group/RangeUDF
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_s3dis.py
72 lines (62 loc) · 3.15 KB
/
train_s3dis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import networks.rangeudf as model
import datasets.dataloader_s3dis as voxelized_data
from networks import training
import torch
import config as cfg_loader
import numpy as np
import random
import pickle
import os
def seed_torch(seed=20):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = False
seed_torch()
cfg = cfg_loader.get_config()
cfg.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_dataset = voxelized_data.VoxelizedDataset(cfg,
'train',
pointcloud_samples=cfg.num_points,
data_path=cfg.data_dir,
split_file=cfg.split_file,
batch_size=cfg.batch_size,
num_sample_points=cfg.num_sample_points_training,
num_workers=30,
sample_distribution=cfg.sample_ratio,
sample_sigmas=cfg.sample_std_dev)
val_dataset = voxelized_data.VoxelizedDataset(cfg,
'val',
pointcloud_samples=cfg.num_points,
data_path=cfg.data_dir,
split_file=cfg.split_file,
batch_size=cfg.batch_size,
num_sample_points=cfg.num_sample_points_training,
num_workers=30,
sample_distribution=cfg.sample_ratio,
sample_sigmas=cfg.sample_std_dev)
net = model.D3F(cfg)
print(net)
if not os.path.exists('experiments/{}/{}'.format(cfg.exp_name,cfg.log_dir)):
os.makedirs('experiments/{}/{}'.format(cfg.exp_name,cfg.log_dir))
cfg_pth='experiments/{}/{}/tarin_conf.pkl'.format(cfg.exp_name,cfg.log_dir)
with open(cfg_pth,'wb') as f:
pickle.dump(cfg,f)
trainer = training.Trainer(net,
cfg,
torch.device("cuda"),
train_dataset,
val_dataset,
cfg.exp_name,
cfg.log_dir,
optimizer=cfg.optimizer,
gamma=cfg.gamma,
lr=cfg.lr,
threshold=cfg.max_dist,
checkpoint=cfg.ckpt)
trainer.train_model(cfg.num_epochs)