-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcommon.py
139 lines (115 loc) · 4.96 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils.SE3 import *
def rigid_transform_3d(A, B, weights=None, weight_threshold=0):
"""
Input:
- A: [bs, num_corr, 3], source point cloud
- B: [bs, num_corr, 3], target point cloud
- weights: [bs, num_corr] weight for each correspondence
- weight_threshold: float, clips points with weight below threshold
Output:
- R, t
"""
bs = A.shape[0]
if weights is None:
weights = torch.ones_like(A[:, :, 0])
weights[weights < weight_threshold] = 0
# weights = weights / (torch.sum(weights, dim=-1, keepdim=True) + 1e-6)
# find mean of point cloud
centroid_A = torch.sum(A * weights[:, :, None], dim=1, keepdim=True) / (torch.sum(weights, dim=1, keepdim=True)[:, :, None] + 1e-6)
centroid_B = torch.sum(B * weights[:, :, None], dim=1, keepdim=True) / (torch.sum(weights, dim=1, keepdim=True)[:, :, None] + 1e-6)
# subtract mean
Am = A - centroid_A
Bm = B - centroid_B
# construct weight covariance matrix
Weight = torch.diag_embed(weights)
H = Am.permute(0, 2, 1) @ Weight @ Bm
# find rotation
U, S, Vt = torch.svd(H.cpu())
U, S, Vt = U.to(weights.device), S.to(weights.device), Vt.to(weights.device)
delta_UV = torch.det(Vt @ U.permute(0, 2, 1))
eye = torch.eye(3)[None, :, :].repeat(bs, 1, 1).to(A.device)
eye[:, -1, -1] = delta_UV
R = Vt @ eye @ U.permute(0, 2, 1)
t = centroid_B.permute(0,2,1) - R @ centroid_A.permute(0,2,1)
# warp_A = transform(A, integrate_trans(R,t))
# RMSE = torch.sum( (warp_A - B) ** 2, dim=-1).mean()
return integrate_trans(R, t)
def knn(x, k, ignore_self=False, normalized=True):
""" find feature space knn neighbor of x
Input:
- x: [bs, num_corr, num_channels], input features
- k:
- ignore_self: True/False, return knn include self or not.
- normalized: True/False, if the feature x normalized.
Output:
- idx: [bs, num_corr, k], the indices of knn neighbors
"""
inner = 2 * torch.matmul(x, x.transpose(2, 1))
if normalized:
pairwise_distance = 2 - inner
else:
xx = torch.sum(x ** 2, dim=-1, keepdim=True)
pairwise_distance = xx - inner + xx.transpose(2, 1)
if ignore_self is False:
idx = pairwise_distance.topk(k=k, dim=-1, largest=False)[1] # (batch_size, num_points, k)
else:
idx = pairwise_distance.topk(k=k + 1, dim=-1, largest=False)[1][:, :, 1:]
return idx
class EdgeConv(nn.Module):
def __init__(self, in_dim, out_dim, k, idx=None):
super(EdgeConv, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.k = k
self.idx = idx
self.conv = nn.Conv2d(in_dim * 2, out_dim, kernel_size=1, bias=False)
def forward(self, x):
# x: [bs, in_dim, N]
bs = x.shape[0]
num_corr = x.shape[2]
device = x.device
# if self.idx is None:
self.idx = knn(x.permute(0,2,1), self.k, normalized=False)
idx_base = torch.arange(0, bs, device=device).view(-1, 1, 1) * num_corr
idx = self.idx + idx_base
idx = idx.view(-1)
x = x.transpose(2, 1).contiguous()
features = x.view(bs * num_corr, -1)[idx, :]
features = features.view(bs, num_corr, self.k, self.in_dim)
x = x.view(bs, num_corr, 1, self.in_dim).repeat(1, 1, self.k, 1)
features = torch.cat([features - x, x], dim=3).permute(0, 3, 1, 2).contiguous()
output = self.conv(features)
output = output.max(dim=-1, keepdim=False)[0]
return output
class ContextNormalization(nn.Module):
def __init__(self):
super(ContextNormalization, self).__init__()
def forward(self, x):
var_eps = 1e-3
mean = torch.mean(x, 2, keepdim=True)
variance = torch.var(x, 2, keepdim=True)
x = (x - mean) / torch.sqrt(variance + var_eps)
return x
class PointCN(nn.Module):
def __init__(self, in_dim=6, num_layers=6, num_channels=128, act_pos='post'):
super(PointCN, self).__init__()
assert act_pos == 'pre' or act_pos == 'post'
modules = [nn.Conv1d(in_dim, num_channels, kernel_size=1, bias=True)]
for i in range(num_layers):
if act_pos == 'pre':
modules.append(ContextNormalization())
modules.append(nn.BatchNorm1d(num_channels))
modules.append(nn.ReLU(inplace=True))
modules.append(nn.Conv1d(num_channels, num_channels, kernel_size=1, bias=True))
else:
modules.append(nn.Conv1d(num_channels, num_channels, kernel_size=1, bias=True))
modules.append(ContextNormalization())
modules.append(nn.BatchNorm1d(num_channels))
modules.append(nn.ReLU(inplace=True))
self.encoder = nn.Sequential(*modules)
def forward(self, x):
features = self.encoder(x)
return features