-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathevaluate_metric.py
116 lines (101 loc) · 4.62 KB
/
evaluate_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from sklearn.metrics import recall_score, precision_score, f1_score
from utils.SE3 import *
import warnings
warnings.filterwarnings('ignore')
class TransformationLoss(nn.Module):
def __init__(self, re_thre=15, te_thre=30):
super(TransformationLoss, self).__init__()
self.re_thre = re_thre # rotation error threshold (deg)
self.te_thre = te_thre # translation error threshold (cm)
# def forward(self, trans, gt_trans, src_keypts, tgt_keypts, probs):
def forward(self, trans, gt_trans, src_keypts, tgt_keypts, probs):
"""
Transformation Loss
Inputs:
- trans: [bs, 4, 4] SE3 transformation matrices
- gt_trans: [bs, 4, 4] ground truth SE3 transformation matrices
- src_keypts: [bs, num_corr, 3]
- tgt_keypts: [bs, num_corr, 3]
- probs: [bs, num_corr] predicted inlier probability
Outputs:
- loss transformation loss
- recall registration recall (re < re_thre & te < te_thre)
- RE rotation error
- TE translation error
- RMSE RMSE under the predicted transformation
"""
bs = trans.shape[0]
R, t = decompose_trans(trans)
gt_R, gt_t = decompose_trans(gt_trans)
recall = 0
RE = torch.tensor(0.0).to(trans.device)
TE = torch.tensor(0.0).to(trans.device)
RMSE = torch.tensor(0.0).to(trans.device)
loss = torch.tensor(0.0).to(trans.device)
for i in range(bs):
re = torch.acos(torch.clamp((torch.trace(R[i].T @ gt_R[i]) - 1) / 2.0, min=-1, max=1))
te = torch.sqrt(torch.sum((t[i] - gt_t[i]) ** 2))
warp_src_keypts = transform(src_keypts[i], trans[i])
rmse = torch.norm(warp_src_keypts - tgt_keypts, dim=-1).mean()
re = re * 180 / np.pi
te = te * 100
if te < self.te_thre and re < self.re_thre:
recall += 1
RE += re
TE += te
RMSE += rmse
pred_inliers = torch.where(probs[i] > 0)[0]
if len(pred_inliers) < 1:
loss += torch.tensor(0.0).to(trans.device)
else:
warp_src_keypts = transform(src_keypts[i], trans[i])
loss += ((warp_src_keypts - tgt_keypts)**2).sum(-1).mean()
return loss / bs, recall * 100.0 / bs, RE / bs, TE / bs, RMSE / bs
class ClassificationLoss(nn.Module):
def __init__(self, balanced=True):
super(ClassificationLoss, self).__init__()
self.balanced = balanced
def forward(self, pred, gt, weight=None):
"""
Classification Loss for the inlier confidence
Inputs:
- pred: [bs, num_corr] predicted logits/labels for the putative correspondences
- gt: [bs, num_corr] ground truth labels
Outputs:(dict)
- loss (weighted) BCE loss for inlier confidence
- precision: inlier precision (# kept inliers / # kepts matches)
- recall: inlier recall (# kept inliers / # all inliers)
- f1: (precision * recall * 2) / (precision + recall)
- logits_true: average logits for inliers
- logits_false: average logits for outliers
"""
num_pos = torch.relu(torch.sum(gt) - 1) + 1
num_neg = torch.relu(torch.sum(1 - gt) - 1) + 1
if weight is not None:
loss = nn.BCEWithLogitsLoss(reduction='none')(pred, gt.float())
loss = torch.mean(loss * weight)
elif self.balanced is False:
loss = nn.BCEWithLogitsLoss(reduction='mean')(pred, gt.float())
else:
loss = nn.BCEWithLogitsLoss(pos_weight=num_neg * 1.0 / num_pos, reduction='mean')(pred, gt.float())
# compute precision, recall, f1
pred_labels = pred > 0
gt, pred_labels, pred = gt.detach().cpu().numpy(), pred_labels.detach().cpu().numpy(), pred.detach().cpu().numpy()
precision = precision_score(gt[0], pred_labels[0])
recall = recall_score(gt[0], pred_labels[0])
f1 = f1_score(gt[0], pred_labels[0])
mean_logit_true = np.sum(pred * gt) / max(1, np.sum(gt))
mean_logit_false = np.sum(pred * (1 - gt)) / max(1, np.sum(1 - gt))
eval_stats = {
"loss": loss,
"precision": float(precision),
"recall": float(recall),
"f1": float(f1),
"logit_true": float(mean_logit_true),
"logit_false": float(mean_logit_false)
}
return eval_stats